Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(1): 016806, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012646

RESUMEN

Time-resolved vibrational spectroscopy constitutes an invaluable experimental tool for monitoring hot-carrier-induced surface reactions. However, the absence of a full understanding of the precise microscopic mechanisms causing the transient spectral changes has limited its applicability. Here we introduce a robust first-principles theoretical framework that successfully explains both the nonthermal frequency and linewidth changes of the CO internal stretch mode on Cu(100) induced by femtosecond laser pulses. Two distinct processes engender the changes: electron-hole pair excitations underlie the nonthermal frequency shifts, while electron-mediated vibrational mode coupling gives rise to linewidth changes. Furthermore, the origin and precise sequence of coupling events are finally identified.

2.
J Phys Chem Lett ; 10(5): 1043-1047, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30776894

RESUMEN

Measured lifetimes of the CO internal stretch mode on various metal surfaces routinely lie in the picosecond regime. These short vibrational lifetimes, which are actually reproduced by current first-principles nonadiabatic calculations, are attributed to the rapid vibrational energy loss that is caused by the facile excitation of electron-hole pairs in metals. However, this explanation was recently questioned by the huge discrepancy that exists for CO on Au(111) between the experimental vibrational lifetime that is larger than 100 ps and the previous theoretical predictions of 4.8 and 1.6 ps. Here, we show that the state-of-the-art nonadiabatic theory does reproduce the long CO lifetime measured in Au(111) provided the molecule-surface interaction is properly described. Importantly, our new results confirm that the current understanding of the adsorbates' vibrational relaxation at metal surfaces is indeed valid.

3.
Phys Rev Lett ; 120(15): 156804, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756898

RESUMEN

We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA