Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Anim Reprod ; 19(1): e20220009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432605

RESUMEN

The assessment of morphology and digital image opacity may provide valuable information on the present embryo quality. Time-lapse imaging has been employed in research to establish a means of monitoring the dynamic nature of preimplantation embryo development. The aim of present study was to use time-lapse imaging for assessing various prospective morphometric and phototextural markers of the developmental potential of in vitro-derived ovine embryos. Oocytes were obtained by scarification of ovaries from nine Polish Longwool ewes. After in vitro maturation (IVM) and fertilization (IVF) of oocytes with fresh ram semen, the development of embryos to the blastocyst stage was monitored and evaluated using Primo Vision time-lapse imaging technology. Commercially available Image-Pro® Plus software was used to measure zona pellucida thickness, embryo diameter, total area of the perivitelline space, cellular grey-scale pixel intensity and cellular pixel heterogeneity. Statistical assessment of all attributes was done at various time points during embryo development (i.e., presumptive zygote stage: t(0); first cleavage detected at t(2) or t(3); and second cleavage detected at t(4) or t(6)). Out of thirty-seven zygotes analyzed in this study, five did not divide, 26 arrested before and six developed to the blastocyst stage. Our present results indicate that most parameters analyzed did not differ among embryos varying in their developmental fate except for the perivitelline space area that was greater (P<0.05) for non-dividing zygotes than future blastocysts at the presumptive zygote stage (4040±1850 vs. 857±262 µm2, respectively; means±SEM). Consequently, the measurement of perivitelline space at t(0) can potentially be used to prognosticate developmental potential of in vitro-produced ovine embryos albeit further confirmational studies are needed.

2.
Anim. Reprod. (Online) ; 19(1): e20220009, 2022. ilus, tab
Artículo en Inglés | VETINDEX | ID: biblio-1367902

RESUMEN

The assessment of morphology and digital image opacity may provide valuable information on the present embryo quality. Time-lapse imaging has been employed in research to establish a means of monitoring the dynamic nature of preimplantation embryo development. The aim of present study was to use time-lapse imaging for assessing various prospective morphometric and phototextural markers of the developmental potential of in vitro-derived ovine embryos. Oocytes were obtained by scarification of ovaries from nine Polish Longwool ewes. After in vitro maturation (IVM) and fertilization (IVF) of oocytes with fresh ram semen, the development of embryos to the blastocyst stage was monitored and evaluated using Primo Vision time-lapse imaging technology. Commercially available Image-Pro® Plus software was used to measure zona pellucida thickness, embryo diameter, total area of the perivitelline space, cellular grey-scale pixel intensity and cellular pixel heterogeneity. Statistical assessment of all attributes was done at various time points during embryo development (i.e., presumptive zygote stage: t(0); first cleavage detected at t(2) or t(3); and second cleavage detected at t(4) or t(6)). Out of thirty-seven zygotes analyzed in this study, five did not divide, 26 arrested before and six developed to the blastocyst stage. Our present results indicate that most parameters analyzed did not differ among embryos varying in their developmental fate except for the perivitelline space area that was greater (P<0.05) for non-dividing zygotes than future blastocysts at the presumptive zygote stage (4040±1850 vs. 857±262 µm2, respectively; means±SEM). Consequently, the measurement of perivitelline space at t(0) can potentially be used to prognosticate developmental potential of in vitro-produced ovine embryos albeit further confirmational studies are needed.(AU)


Asunto(s)
Animales , Femenino , Oocitos , Técnicas In Vitro , Ovinos/embriología , Desarrollo Embrionario , Fertilización , Imagen de Lapso de Tiempo
3.
Motriz (Online) ; 27: e1021020012, 2021. tab
Artículo en Inglés | LILACS | ID: biblio-1287349

RESUMEN

Abstract Aim: The purpose of the study was to assess upper limbs' maximum power and locomotion speed among amputee football (amputee soccer) players. Methods: The 30-s Wingate Anaerobic test and the 20-m sprint test were performed. Anthropometric measurements and body composition (Body mass index (BMI), percentage of body fat (% BF), and lean body mass (LBM)) were examined. Results: BMI significantly differentiated forwards and defenders (p < 0.05). Peak power (PP) and mean power (MP) were related to LBM (p < 0.05), thus defenders reached higher values of PP, in comparison to forwards. % BF and BMI were related to relative mean power (rMP) (p < 0.05). Field position differentiated players in terms of upper limbs' relative peak power (rPP) in favour of forwards (p < 0.05). Age was a significant factor for speed velocity on 10 m and 20 m (p < 0.05). There was no relationship between upper limbs' power and locomotion speed. Conclusion: Body composition, especially % BF may influence on the anaerobic performance of amputee football players.


Asunto(s)
Humanos , Fútbol , Extremidad Superior , Fuerza Muscular/fisiología , Amputados , Composición Corporal , Antropometría/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA