Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202403495, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843268

RESUMEN

In this work, we study the interface obtained by depositing a monolayer of a Blatter radical derivative on polycrystalline cobalt. By examining the occupied and unoccupied states at the interface, using soft X-ray techniques, combined with electronic structure calculations, we could simultaneously determine the electronic structure of both the molecular and ferromagnetic sides of the interface, thus obtaining a full understanding of the interfacial magnetic properties. We found that the molecule is strongly hybridized with the surface. Changes in the core level spectra reflect the modification of the molecule and the cobalt electronic structures inducing a decrease in the magnetic moment of the cobalt atoms bonded to the molecules which, in turn, lose their radical character. Our method allowed us to screen, beforehand, organic/ferromagnetic interfaces given their potential applications in spintronics.

2.
J Am Chem Soc ; 145(24): 13335-13346, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37285418

RESUMEN

Open-shell organic molecules, including S = 1/2 radicals, may provide enhanced properties for several emerging technologies; however, relatively few synthesized to date possess robust thermal stability and processability. We report the synthesis of S = 1/2 biphenylene-fused tetrazolinyl radicals 1 and 2. Both radicals possess near-perfect planar structures based on their X-ray structures and density-functional theory (DFT) computations. Radical 1 possesses outstanding thermal stability as indicated by the onset of decomposition at 269 °C, based on thermogravimetric analysis (TGA) data. Both radicals possess very low oxidation potentials <0 V (vs. SCE) and their electrochemical energy gaps, Ecell ≈ 0.9 eV, are rather low. Magnetic properties of polycrystalline 1 are characterized by superconducting quantum interference device (SQUID) magnetometry revealing a one-dimensional S = 1/2 antiferromagnetic Heisenberg chain with exchange coupling constant J'/k ≈ -22.0 K. Radical 1 in toluene glass possesses a long electron spin coherence time, Tm ≈ 7 µs in the 40-80 K temperature range, a property advantageous for potential applications as a molecular spin qubit. Radical 1 is evaporated under ultrahigh vacuum (UHV) forming assemblies of intact radicals on a silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy (XPS). Scanning electron microscope (SEM) images indicate that the radical molecules form nanoneedles on the substrate. The nanoneedles are stable for at least 64 hours under air as monitored by using X-ray photoelectron spectroscopy. Electron paramagnetic resonance (EPR) studies of the thicker assemblies, prepared by UHV evaporation, indicate radical decay according to first-order kinetics with a long half-life of 50 ± 4 days at ambient conditions.

3.
ACS Appl Mater Interfaces ; 15(25): 30935-30943, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37319383

RESUMEN

Blatter radical derivatives are very attractive due to their potential applications, ranging from batteries to quantum technologies. In this work, we focus on the latest insights regarding the fundamental mechanisms of radical thin film (long-term) degradation, by comparing two Blatter radical derivatives. We find that the interaction with different contaminants (such as atomic H, Ar, N, and O and molecular H2, N2, O2, H2O, and NH2) affects the chemical and magnetic properties of the thin films upon air exposure. Also, the radical-specific site, where the contaminant interaction takes place, plays a role. Atomic H and NH2 are detrimental to the magnetic properties of Blatter radicals, while the presence of molecular water influences more specifically the magnetic properties of the diradical thin films, and it is believed to be the major cause of the shorter diradical thin film lifetime in air.

4.
Chem Sci ; 11(2): 516-524, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-32190271

RESUMEN

The incorporation of terminal alkynes into the chemical structure of persistent organic perchlorotriphenylmethyl (PTM) radicals provides new chemical tools to expand their potential applications. In this work, this is demonstrated by the chemical functionalization of two types of substrates, hydrogenated SiO2-free silicon (Si-H) and gold, and, by exploiting the click chemistry, scarcely used with organic radicals, to synthesise multifunctional systems. On one hand, the one-step functionalization of Si-H allows a light-triggered capacitance switch to be successfully achieved under electrochemical conditions. On the other hand, the click reaction between the alkyne-terminated PTM radical and a ferrocene azide derivative, used here as a model azide system, leads to a multistate electrochemical switch. The successful post-surface modification makes the self-assembled monolayers reported here an appealing platform to synthesise multifunctional systems grafted on surfaces.

5.
Chem Sci ; 11(34): 9162-9172, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34123165

RESUMEN

We have investigated the radical functionalization of gold surfaces with a derivative of the perchlorotriphenylmethyl (PTM) radical using two methods: by chemisorption from the radical solution and by on-surface chemical derivation from a precursor. We have investigated the obtained self-assembled monolayers by photon-energy dependent X-ray photoelectron spectroscopy. Our results show that the molecules were successfully anchored on the surfaces. We have used a robust method that can be applied to a variety of materials to assess the stability of the functionalized interface. The monolayers are characterized by air and X-ray beam stability unprecedented for films of organic radicals. Over very long X-ray beam exposure we observed a dynamic nature of the radical-Au complex. The results clearly indicate that (mono)layers of PTM radical derivatives have the necessary stability to withstand device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA