Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 6(11): 4603-4612, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37844275

RESUMEN

In vitro cell models have undergone a shift from 2D models on glass slides to 3D models that better reflect the native 3D microenvironment. 3D bioprinting promises to progress the field by allowing the high-throughput production of reproducible cell-laden structures with high fidelity. The current stiffness range of printable matrices surrounding the cells that mimic the extracellular matrix environment remains limited. The work presented herein aims to expand the range of stiffnesses by utilizing a four-armed polyethylene glycol with maleimide-functionalized arms. The complementary cross-linkers comprised a matrix metalloprotease-degradable peptide and a four-armed thiolated polymer which were adjusted in ratio to tune the stiffness. The modularity of this system allows for a simple method of controlling stiffness and the addition of biological motifs. The application of this system in drop-on-demand printing is validated using MCF-7 cells, which were monitored for viability and proliferation. This study shows the potential of this system for the high-throughput investigation of the effects of stiffness and biological motif compositions in relation to cell behaviors.


Asunto(s)
Bioimpresión , Hidrogeles , Humanos , Matriz Extracelular , Vidrio , Células MCF-7
2.
Beilstein J Org Chem ; 17: 2302-2314, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621393

RESUMEN

Herein, the postfunctionalization of different non-fouling PISA particles, prepared from either poly(oligo ethylene glycol methyl ether methacrylate) (pPEGMA) and the anticancer drug PENAO (4-(N-(S-penicillaminylacetyl)amino)phenylarsenonous acid) or zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and PENAO were reported. Both PISA particles were reacted with triphenylphosphonium (TPP) as mitochondria targeting units in order to evaluate the changes in cellular uptake or the toxicity of the conjugated arsenic drug. Attachment of TPP onto the PISA particles however was found not to enhance the mitochondrial accumulation, but it did influence overall the biological activity of pMPC-based particles in 2D and 3D cultured sarcoma SW982 cells. When TPP was conjugated to the pMPC PISA particles more cellular uptake as well as better spheroid penetration were observed, while TPP on PEG-based PISA had only little effect. It was hypothesized that TPP on the micelle surface may not be accessible enough to allow mitochondria targeting, but more structural investigations are required to elucidate this.

3.
Biomacromolecules ; 21(6): 2320-2333, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32343128

RESUMEN

Phosphorylcholine is known to repel the absorption of proteins onto surfaces, which can prevent the formation of a protein corona on the surface of nanoparticles. This can influence the fate of nanoparticles used for drug delivery. This material could therefore serve as an alternative to poly(ethylene glycol) (PEG). Herein, the synthesis of different particles prepared by polymerization-induced self-assembly (PISA) coated with either poly(ethylene glycol) (PEG) or zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and 4-(N-(S-penicillaminylacetyl)amino) phenylarsenonous acid (PENAO) was reported. The anticancer drug 4-(N-(S-penicillaminylacetyl)amino) phenylarsenonous acid (PENAO) was conjugated to the shell-forming block. Interactions of the different coated nanoparticles, which present comparable sizes and size distributions (76-85 nm, PDI = 0.067-0.094), with two-dimensional (2D) and three-dimensional (3D) cultured cells were studied, and their cytotoxicities, cellular uptakes, spheroid penetration, and cell localization profiles were analyzed. While only a minimal difference in behaviour was observed for nanoparticles assessed using in vitro experiment (with PEG-co- PENAO-coated micelles showing slightly higher cytotoxicity and better spheroid penetration and cell localization ability), the effect of the different physicochemical properties between nanoparticles had a more dramatic effect on in vivo biodistribution. After 1 h of injection, the majority of the MPC-co-PENAO-coated nanoparticles were found to accumulate in the liver, making this particle system unfeasible for future biological studies.


Asunto(s)
Nanopartículas , Polietilenglicoles , Micelas , Tamaño de la Partícula , Fosforilcolina , Distribución Tisular
4.
ACS Macro Lett ; 8(1): 57-63, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35619410

RESUMEN

We report on the synthesis of poly(2-methacryloyloxyethyl phosphorycholine-co-PENAO)-block-poly(methyl methacrylate) core-shell nanoparticles which carry different chain lengths of zwitterionic 2-methacryloyloxyethyl phosphorycholine (MPC) on a nanoparticle surface. The particles, 30-40 nm in size, were readily obtained by polymerization-induced self-assembly (PISA) of the corresponding arsenic-based MPC polymers as the stabilizer block and methyl methacrylate (MMA) as the core-forming block. Zwitterionic nanoparticles are ideal candidates for protein-repellent materials. Herein, we show how the decrease of zwitterionic chain lengths tunes the reactivity and cytotoxicity of the organoarsenical anticancer drug PENAO (4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid). More cytotoxic (5-fold) nanoparticles were obtained when the MPC chain lengths were condensed from 37 to 13 repeating units. To gain a better understanding of the behavior of the drug-directed PISA particles, small-angle neutron scattering (SANS) experiments were conducted, evidencing that having PENAO located in the hydrophilic building block indeed influences the physiochemical micelle structure in terms of core radius (rcore), SLD, shell thickness, and aggregation number.

5.
Bioconjug Chem ; 29(2): 546-558, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29346731

RESUMEN

PENAO (4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid), which is a mitochondria inhibitor that reacts with adenine nucleotide translocator (ANT), is currently being trialed in patients with solid tumors. To increase the stability of the drug, the formation of nanoparticles has been proposed. Herein, the direct synthesis of polymeric micelles based on the anticancer drug PENAO is presented. PENAO is readily available for amidation reaction to form PENAO MA (4-(N-(S-penicillaminylacetyl) amino) phenylarsonous acid methacrylamide) which undergoes RAFT (reversible addition-fragmentation chain transfer) polymerization with poly(ethylene glycol methyl ether methacrylate) as comonomer and poly(methyl methacrylate) (pMMA) as chain transfer agent, resulting in p(MMA)-b-p(PEG-co-PENAO) block copolymers with 3-15 wt % of PENAO MA. The different block copolymers self-assembled into micelle structures, varying in size and stability (Dh = 84-234 nm, cmc = 0.5-82 µg mol-1) depending on the hydrophilic to hydrophobic ratio of the polymer blocks and the amount of drug in the corona of the particle. The more stable micelle structures were investigated toward 143B human osteosarcoma cells, showing an enhanced cytotoxicity and cellular uptake compared to the free drug PENAO (IC50 (PENAO) = 2.7 ± 0.3 µM; IC50 (micelle M4) = 0.8 ± 0.02 µM). Furthermore, PENAOs arsonous acid residue remains active when incorporated into a polymer matrix and conjugates to small mono and closely spaced dithiols and is able to actively target the mitochondria, which is PENAO's main target to introduce growth inhibition in cancer cells. As a result, no cleavable linker between drug and polymer was necessary for the delivery of PENAO to osteosarcoma cells. These findings provide a rationale for in vivo studies of micelle M4 versus PENAO in an osteosarcoma animal model.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Arsenicales/química , Arsenicales/farmacología , Nanopartículas/química , Polímeros/química , Polímeros/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/química , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Polimerizacion , Compuestos de Sulfhidrilo/química
6.
Macromol Biosci ; 17(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234423

RESUMEN

The ruthenium complex-dichlororuthenium (II) (p-cymene) (1,3,5-triaza-7-phosphaadamantane) (RAPTA-C)-has shown to be remarkably effective at suppressing the growth of solid tumor metastases. However, poor delivery efficacy and the lack of targeting ability of the common drug delivery system pose significant obstacles to maximize the therapeutic benefit of RAPTA-C. Inspired by the overexpression of GLUT5 transporter on the surface of breast cancer tissues but not the healthy mammary tissues, the use of d-fructose as the targeting moiety of the drug carrier can significantly improve the cellular uptake of nanoparticles, thus further enhancing the therapeutic efficiency of RAPTA-C. In this work, fructose-micelles and 2-hydroxyethyl acrylate (HEA)-micelles are prepared to investigate the difference in cellular uptake. It is found that glycopolymer leads to an increased uptake by breast cancer cells, while the HEA-micelles show less uptake. This behavior is also reflected by the slightly faster movement of fructose-coated micelles in MCF-7 tumor spheroid models using light sheet microscopy as analytical tool. The incorporation of RAPTA-C into micelles can enhance the inhibitory effect of the ruthenium drug demonstrated using invasion, chemotaxis, and haptotaxis assays. As a result, fructose-coated nanoparticles can be a promising drug delivery platform of RAPTA-C for the treatment of metastatic breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Portadores de Fármacos , Fructosa/química , Transportador de Glucosa de Tipo 5/metabolismo , Compuestos Organometálicos/farmacología , Acrilatos/química , Animales , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cimenos , Composición de Medicamentos/métodos , Femenino , Expresión Génica , Transportador de Glucosa de Tipo 5/genética , Humanos , Células MCF-7 , Ratones , Micelas , Terapia Molecular Dirigida , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Compuestos Organometálicos/química , Células RAW 264.7 , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología
7.
Org Lett ; 18(9): 2208-11, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27115463

RESUMEN

A novel method to utilize N-heterocyclic olefins (NHOs), the alkylidene derivatives of N-heterocycic carbenes, as organocatalysts to promote transesterification reactions has been developed. Because of their strong Brønsted/Lewis basicity, NHOs can enhance the nucleophilicity of alcohols for their acylation reactions with carboxylic esters. This transformation can be employed in industrially relevant processes such as the production of biodiesel, the depolymerization of polyethylene terephthalate (PET) from plastic bottles for recycling purposes, and the ring-opening polymerization of cyclic esters to form biodegradable polymers such as polylactide (PLA) and polycaprolactone (PCL).

8.
ACS Macro Lett ; 2(3): 246-250, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35581890

RESUMEN

Nanodiamonds (NDs) are highly promising drug carriers due to their biocompatibility, manipulable surface chemistry, and nonbleaching flourescence. In this communication, we compare the cytotoxicity of three ND-cisplatin systems in which cisplatin was incorporated via direct attachment to the ND surface, physical adsorption within a poly(oligo(ethylene glycol) methyl ether methacrylate) POEGMEMA surface coating, or complexation to 1,1-di-tert-butyl 3-(2-methacryloyloxy)ethyl)butane-1,1,3-tricarboxylate (MAETC) groups of a POEGMEMA-st-PMAETC surface layer. The polymer layers were introduced by grafting from RAFT-functionalized ND particles. All three ND systems displayed lower IC50 values than free cisplatin in A2870 and A2870cis ovarian cancer cells. The two polymer-containing systems outperformed their "naked" counterpart, with the POEGMEMA-coated particles the most cytotoxic, displaying an IC50 of 1.5 µM, more than an order of magnitude lower than that of cisplatin. The enhanced cytotoxicity is attributed to promotion of cellular uptake by the hydrophilic surface polymer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...