Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Development ; 145(24)2018 12 18.
Article En | MEDLINE | ID: mdl-30504125

Morphogenesis of the inner ear epithelium requires coordinated deployment of several signaling pathways, and disruptions cause abnormalities of hearing and/or balance. The FGFR2b ligands FGF3 and FGF10 are expressed throughout otic development and are required individually for normal morphogenesis, but their prior and redundant roles in otic placode induction complicates investigation of subsequent combinatorial functions in morphogenesis. To interrogate these roles and identify new effectors of FGF3 and FGF10 signaling at the earliest stages of otic morphogenesis, we used conditional gene ablation after otic placode induction, and temporal inhibition of signaling with a secreted, dominant-negative FGFR2b ectodomain. We show that both ligands are required continuously after otocyst formation for maintenance of otic neuroblasts and for patterning and proliferation of the epithelium, leading to normal morphogenesis of both the cochlear and vestibular domains. Furthermore, the first genome-wide identification of proximal targets of FGFR2b signaling in the early otocyst reveals novel candidate genes for inner ear development and function.


Ear, Inner/growth & development , Ear, Inner/metabolism , Morphogenesis , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Animals , Cell Lineage , Cell Proliferation , Cochlea/growth & development , Cochlea/metabolism , Doxycycline/pharmacology , Female , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 3/metabolism , Ganglion Cysts/metabolism , Gene Expression Regulation, Developmental , Integrases/metabolism , Ligands , Male , Mice , Mutation/genetics , Neurons/cytology , Neurons/metabolism , PAX2 Transcription Factor/metabolism , Reproducibility of Results , Signal Transduction , Time Factors , Transcription, Genetic , Vestibule, Labyrinth/growth & development , Vestibule, Labyrinth/metabolism
2.
Development ; 134(20): 3615-25, 2007 Oct.
Article En | MEDLINE | ID: mdl-17855431

The inner ear, which contains sensory organs specialized for hearing and balance, develops from an ectodermal placode that invaginates lateral to hindbrain rhombomeres (r) 5-6 to form the otic vesicle. Under the influence of signals from intra- and extraotic sources, the vesicle is molecularly patterned and undergoes morphogenesis and cell-type differentiation to acquire its distinct functional compartments. We show in mouse that Fgf3, which is expressed in the hindbrain from otic induction through endolymphatic duct outgrowth, and in the prospective neurosensory domain of the otic epithelium as morphogenesis initiates, is required for both auditory and vestibular function. We provide new morphologic data on otic dysmorphogenesis in Fgf3 mutants, which show a range of malformations similar to those of Mafb (Kreisler), Hoxa1 and Gbx2 mutants, the most common phenotype being failure of endolymphatic duct and common crus formation, accompanied by epithelial dilatation and reduced cochlear coiling. The malformations have close parallels with those seen in hearing-impaired patients. The morphologic data, together with an analysis of changes in the molecular patterning of Fgf3 mutant otic vesicles, and comparisons with other mutations affecting otic morphogenesis, allow placement of Fgf3 between hindbrain-expressed Hoxa1 and Mafb, and otic vesicle-expressed Gbx2, in the genetic cascade initiated by WNT signaling that leads to dorsal otic patterning and endolymphatic duct formation. Finally, we show that Fgf3 prevents ventral expansion of r5-6 neurectodermal Wnt3a, serving to focus inductive WNT signals on the dorsal otic vesicle and highlighting a new example of cross-talk between the two signaling systems.


Body Patterning , Ear, Inner , Epithelium , Fibroblast Growth Factor 3/metabolism , Morphogenesis , Animals , Biomarkers/metabolism , Ear, Inner/abnormalities , Ear, Inner/cytology , Ear, Inner/embryology , Ear, Inner/metabolism , Epithelium/anatomy & histology , Epithelium/embryology , Epithelium/metabolism , Fibroblast Growth Factor 3/genetics , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Phenotype , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt3 Protein , Wnt3A Protein
...