Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 228(9): 2165-2177, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804431

RESUMEN

Integrating the underlying brain circuit's structural and functional architecture is required to explore the functional organization of cognitive networks. In that regard, we recently introduced the Functionnectome. This structural-functional method combines an fMRI acquisition with tractography-derived white matter connectivity data to map cognitive processes onto the white matter. However, this multimodal integration faces three significant challenges: (1) the necessarily limited overlap between tractography streamlines and the grey matter, which may reduce the amount of functional signal associated with the related structural connectivity; (2) the scrambling effect of crossing fibers on functional signal, as a single voxel in such regions can be structurally connected to several cognitive networks with heterogeneous functional signals; and (3) the difficulty of interpretation of the resulting cognitive maps, as crossing and overlapping white matter tracts can obscure the organization of the studied network. In the present study, we tackled these problems by developing a streamline-extension procedure and dividing the white matter anatomical priors between association, commissural, and projection fibers. This approach significantly improved the characterization of the white matter involvement in the studied cognitive processes. The new Functionnectome priors produced are now readily available, and the analysis workflow highlighted here should also be generalizable to other structural-functional approaches. We improved the Functionnectome approach to better study the involvement of white matter in brain function by separating the analysis of the three classes of white matter fibers (association, commissural, and projection fibers). This step successfully clarified the activation maps and increased their statistical significance.


Asunto(s)
Sustancia Blanca , Encéfalo , Imagen por Resonancia Magnética , Sustancia Gris , Corteza Cerebral
2.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808645

RESUMEN

Characterizing how, when and where the human brain changes across the lifespan is fundamental to our understanding of developmental processes of childhood and adolescence, degenerative processes of aging, and divergence from normal patterns in disease and disorders. We aimed to provide detailed descriptions of white matter pathways across the lifespan by thoroughly characterizing white matter microstructure, white matter macrostructure, and morphology of the cortex associated with white matter pathways. We analyzed 4 large, high-quality, publicly-available datasets comprising 2789 total imaging sessions, and participants ranging from 0 to 100 years old, using advanced tractography and diffusion modeling. We first find that all microstructural, macrostructural, and cortical features of white matter bundles show unique lifespan trajectories, with rates and timing of development and degradation that vary across pathways - describing differences between types of pathways and locations in the brain, and developmental milestones of maturation of each feature. Second, we show cross-sectional relationships between different features that may help elucidate biological changes occurring during different stages of the lifespan. Third, we show unique trajectories of age-associations across features. Finally, we find that age associations during development are strongly related to those during aging. Overall, this study reports normative data for several features of white matter pathways of the human brain that will be useful for studying normal and abnormal white matter development and degeneration.

3.
Commun Biol ; 6(1): 726, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452124

RESUMEN

Over the past two decades, the study of resting-state functional magnetic resonance imaging has revealed that functional connectivity within and between networks is linked to cognitive states and pathologies. However, the white matter connections supporting this connectivity remain only partially described. We developed a method to jointly map the white and grey matter contributing to each resting-state network (RSN). Using the Human Connectome Project, we generated an atlas of 30 RSNs. The method also highlighted the overlap between networks, which revealed that most of the brain's white matter (89%) is shared between multiple RSNs, with 16% shared by at least 7 RSNs. These overlaps, especially the existence of regions shared by numerous networks, suggest that white matter lesions in these areas might strongly impact the communication within networks. We provide an atlas and an open-source software to explore the joint contribution of white and grey matter to RSNs and facilitate the study of the impact of white matter damage to these networks. In a first application of the software with clinical data, we were able to link stroke patients and impacted RSNs, showing that their symptoms aligned well with the estimated functions of the networks.


Asunto(s)
Conectoma , Sustancia Blanca , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen
4.
Brain ; 146(5): 1963-1978, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36928757

RESUMEN

Stroke significantly impacts the quality of life. However, the long-term cognitive evolution in stroke is poorly predictable at the individual level. There is an urgent need to better predict long-term symptoms based on acute clinical neuroimaging data. Previous works have demonstrated a strong relationship between the location of white matter disconnections and clinical symptoms. However, rendering the entire space of possible disconnection-deficit associations optimally surveyable will allow for a systematic association between brain disconnections and cognitive-behavioural measures at the individual level. Here we present the most comprehensive framework, a composite morphospace of white matter disconnections (disconnectome) to predict neuropsychological scores 1 year after stroke. Linking the latent disconnectome morphospace to neuropsychological outcomes yields biological insights that are available as the first comprehensive atlas of disconnectome-deficit relations across 86 scores-a Neuropsychological White Matter Atlas. Our novel predictive framework, the Disconnectome Symptoms Discoverer, achieved better predictivity performances than six other models, including functional disconnection, lesion topology and volume modelling. Out-of-sample prediction derived from this atlas presented a mean absolute error below 20% and allowed personalize neuropsychological predictions. Prediction on an external cohort achieved an R2 = 0.201 for semantic fluency. In addition, training and testing were replicated on two external cohorts achieving an R2 = 0.18 for visuospatial performance. This framework is available as an interactive web application (http://disconnectomestudio.bcblab.com) to provide the foundations for a new and practical approach to modelling cognition in stroke. We hope our atlas and web application will help to reduce the burden of cognitive deficits on patients, their families and wider society while also helping to tailor future personalized treatment programmes and discover new targets for treatments. We expect our framework's range of assessments and predictive power to increase even further through future crowdsourcing.


Asunto(s)
Calidad de Vida , Accidente Cerebrovascular , Humanos , Cognición , Neuroimagen/métodos , Síntomas Conductuales , Encéfalo/patología
5.
Neuroimage ; 258: 119391, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716842

RESUMEN

The contribution of structural connectivity to functional connectivity dynamics is still far from being elucidated. Herein, we applied track-weighted dynamic functional connectivity (tw-dFC), a model integrating structural, functional, and dynamic connectivity, on high quality diffusion weighted imaging and resting-state fMRI data from two independent repositories. The tw-dFC maps were analyzed using independent component analysis, aiming at identifying spatially independent white matter components which support dynamic changes in functional connectivity. Each component consisted of a spatial map of white matter bundles that show consistent fluctuations in functional connectivity at their endpoints, and a time course representative of such functional activity. These components show high intra-subject, inter-subject, and inter-cohort reproducibility. We provided also converging evidence that functional information about white matter activity derived by this method can capture biologically meaningful features of brain connectivity organization, as well as predict higher-order cognitive performance.


Asunto(s)
Sustancia Blanca , Encéfalo , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen
6.
Commun Biol ; 4(1): 1035, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475518

RESUMEN

In recent years, the field of functional neuroimaging has moved away from a pure localisationist approach of isolated functional brain regions to a more integrated view of these regions within functional networks. However, the methods used to investigate functional networks rely on local signals in grey matter and are limited in identifying anatomical circuitries supporting the interaction between brain regions. Mapping the brain circuits mediating the functional signal between brain regions would propel our understanding of the brain's functional signatures and dysfunctions. We developed a method to unravel the relationship between brain circuits and functions: The Functionnectome. The Functionnectome combines the functional signal from fMRI with white matter circuits' anatomy to unlock and chart the first maps of functional white matter. To showcase this method's versatility, we provide the first functional white matter maps revealing the joint contribution of connected areas to motor, working memory, and language functions. The Functionnectome comes with an open-source companion software and opens new avenues into studying functional networks by applying the method to already existing datasets and beyond task fMRI.


Asunto(s)
Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Programas Informáticos , Sustancia Blanca/fisiología , Neuroimagen Funcional/instrumentación , Humanos , Imagen por Resonancia Magnética/instrumentación
7.
Front Neuroinform ; 15: 641600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262443

RESUMEN

We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all "visible" PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm3 and 0.95 for PVSs larger than 15 mm3. We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.

8.
Brain Struct Funct ; 226(7): 2057-2085, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34283296

RESUMEN

We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1870 young healthy adults, aged 18-35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility-weighted (SWI), and resting-state functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In addition, we present preliminary results on associations of some of these brain image-derived phenotypes at the whole brain level with both age and sex, in the subsample of 1722 individuals aged less than 26 years. We demonstrate that the post-adolescence period is characterized by changes in both structural and microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure and function occurring in this critical period at the interface of late maturation and early ageing.


Asunto(s)
Encéfalo , Universidades , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Estudios Transversales , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Estudiantes , Adulto Joven
9.
Neuroinformatics ; 19(4): 619-637, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33543442

RESUMEN

Functional connectivity analyses of fMRI data have shown that the activity of the brain at rest is spatially organized into resting-state networks (RSNs). RSNs appear as groups of anatomically distant but functionally tightly connected brain regions. Inter-RSN intrinsic connectivity analyses may provide an optimal spatial level of integration to analyze the variability of the functional connectome. Here we propose a deep learning approach to enable the automated classification of individual independent-component (IC) decompositions into a set of predefined RSNs. Two databases were used in this work, BIL&GIN and MRi-Share, with 427 and 1811 participants, respectively. We trained a multilayer perceptron (MLP) to classify each IC as one of 45 RSNs, using the IC classification of 282 participants in BIL&GIN for training and a 5-dimensional parameter grid search for hyperparameter optimization. It reached an accuracy of 92 %. Predictions for the remaining individuals in BIL&GIN were tested against the original classification and demonstrated good spatial overlap between the cortical RSNs. As a first application, we created an RSN atlas based on MRi-Share. This atlas defined a brain parcellation in 29 RSNs covering 96 % of the gray matter. Second, we proposed an individual-based analysis of the subdivision of the default-mode network into 4 networks. Minimal overlap between RSNs was found except in the angular gyrus and potentially in the precuneus. We thus provide the community with an individual IC classifier that can be used to analyze one dataset or to statistically compare different datasets for RSN spatial definitions.


Asunto(s)
Conectoma , Aprendizaje Profundo , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Red Nerviosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...