Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
ACS Omega ; 8(2): 1957-1966, 2023 Jan 17.
Article En | MEDLINE | ID: mdl-36687088

Gibberellin derivatives are a family of tetracyclic diterpenoid plant hormones used in agriculture as plant growth regulators included in the European Directive 91/414. In the pesticide peer review process and to assess their toxicological relevance and product chemical equivalence, the European Food Safety Authority (EFSA) highlighted data gaps such as the identification of hydrolysis products and unknown impurities. The aspect of impurity characterization and quantitation is challenging and requires the use of hyphenated analytical techniques. In this regard, we used an LC-QTOF/MS and NMR analysis for the characterization of gibberellic acid impurities found in technical products. Gibberellic acid impurities such as gibberellin A1 (GA 1 ), 3-isolactone gibberellic acid (iso-GA 3 ), gibberellenic acid, 1α,2α-epoxygibberellin A3 (2-epoxy- GA 3 ), and (1α,2ß,3α,4bß,10ß)-2,3,7-trihydroxy-1-methyl-8-methylenegibb-4-ene-1,10-dicarboxylic acid were identified and successfully characterized. Moreover, an in silico investigation on selected gibberellic acid impurities and derivatives and their interactions with a gibberellin insensitive dwarf1 (GID1) receptor has been carried out by means of induced fit docking (IFD), generalized-Born surface area (MM-GBSA), and metadynamics (MTD) experiments. A direct HPLC method with DAD and MS for the detection of gibberellic acid and its impurities in a technical sample has been developed. Moreover, by means of the in silico characterization of the GID1 receptor-binding pocket, we investigated the receptor affinity of the selected gibberellins, identifying compounds (2) and (4) as the most promising hit to lead compounds.

3.
NanoImpact ; 28: 100430, 2022 10.
Article En | MEDLINE | ID: mdl-36206943

In the current study, coated copper nanoparticles with polyethylene glycol 8000 (Cu@PEG NPs) and copper-doped zinc oxide nanoparticles with diethylene glycol (Cu-doped ZnO@DEG NPs) have been synthesized via solvothermal and microwave-assisted process, physicochemical characterized, and studied as nano-fungicides and nano-nematicides. Spheroidal Cu-doped ZnO@DEG NPs and urchin-like Cu@PEG NPs have been isolated with average crystallite sizes of 12 and 21 nm, respectively. The Cu doping (11.3 wt%) in ZnO lattice (88.7 wt%) was investigated by Rietveld refinement analysis and confirmed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The Cu-doped ZnO@DEG and Cu@PEG NPs revealed a growth inhibition of fungi Botrytis cinerea (B. cinerea) and Sclerotinia sclerotiorum (S. sclerotiorum) and nematode paralysis of Meloidogyne javanica in a dose-dependent manner. Cu-doped ZnO@DEG NPs were more effective against M. javanica (EC50 = 2.60 µg/mL) than the Cu@PEG NPs (EC50 = 25 µg/mL). In contrast, the antifungal activity was approximately similar for both NPs, with EC50 values at 310 and 327 µg/mL against B. cinerea, respectively, and 260 and 278 µg/mL against S. sclerotiorum, respectively. Lettuce (Lactuca sativa) plants were inoculated with S. sclerotiorum or M. javanica and sprayed with either Cu-doped ZnO@DEG NPs or Cu@PEG NPs. The antifungal effect was evaluated based on a disease index (DI), and nematicidal activity was assessed based on the total number of galls and nematode females per root gram. NPs successfully inhibited the growth of both pathogens without causing phytotoxicity on lettuce. The DI were significantly decreased as compared to the positive control (DI = 5.2), estimated equal to 1.7, 2.9 and 2.5 for Cu@PEG NPs, Cu-doped ZnO@DEG NPs and the chemical control (KOCIDE 2000), respectively. The reduction in galling and population of M. javanica ranged from 39.32% to 32.29%, statistically like chemical control. The treatment of lettuce plants with Cu-doped ZnO@DEG NPs increased the leaf net photosynthetic value at 4.60 and 6.66 µmol CO2-2 s-1 in plants inoculated with S. sclerotiorum and M. javanica, respectively, as compared to the control (3.00 µmol CO2-2 s-1). The antioxidant capacity of NPs treated lettuce plants was evaluated as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in leaf extracts. Plants inoculated with S. sclerotiorum and sprayed with Cu-doped ZnO@DEG and Cu@PEG NPs, exhibited a 34.22% and 32.70% increase in antioxidant capacity, respectively, higher than the control. Similarly, an increase in antioxidant capacity was measured (39.49 and 37.36%) in lettuce inoculated with M. javanica and treated with Cu-doped ZnO@DEG and Cu@PEG NPs, respectively. Moreover, an increase of phenolic compounds in lettuce leaf tissue treated with NPs was measured as compared to the control. Overall, foliar applied Cu and Cu-doped ZnO NPs could be a promising tool to control phytopathogenic fungi and nematodes contributing to sustainability of agri-food sector.


Carbon Dioxide , Copper , Copper/pharmacology
4.
Molecules ; 26(6)2021 Mar 23.
Article En | MEDLINE | ID: mdl-33806970

Most insecticides commonly used in storage facilities are synthetic, an issue that generates concerns about food safety and public health. Therefore, the development of eco-friendly pest management tools is urgently needed. In the present study, a 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsion (HvNE) was developed and evaluated for managing Tribolium confusum, T. castaneum, and Tenebrio molitor, as an eco-friendly wheat protectant. Larval and adult mortality was evaluated after 4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days, testing two HvNE concentrations (500 ppm and 1000 ppm). T. confusum and T. castaneum adults and T. molitor larvae were tolerant to both concentrations of the HvNE, reaching 13.0%, 18.7%, and 10.3% mortality, respectively, at 1000 ppm after 7 days of exposure. However, testing HvNE at 1000 ppm, the mortality of T. confusum and T. castaneum larvae and T. molitor adults 7 days post-exposure reached 92.1%, 97.4%, and 100.0%, respectively. Overall, the HvNE can be considered as an effective adulticide or larvicide, depending on the target species. Our results highlight the potential of H. voyronii essential oil for developing green nanoinsecticides to be used in real-world conditions against key stored-product pests.


Insecticides , Laurales/chemistry , Oils, Volatile , Tribolium/growth & development , Triticum/parasitology , Animals , Emulsions , Insecticides/chemistry , Insecticides/pharmacology , Larva/growth & development , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
5.
Environ Sci Pollut Res Int ; 28(31): 42763-42775, 2021 Aug.
Article En | MEDLINE | ID: mdl-33825104

The botanical substances constitute valuable alternatives to synthetic insecticides. In the last decades, numerous substances of natural origin have been tested against stored-product insects, mostly as fumigants or for contact toxicity, while there is limited knowledge on the efficacy of plant secondary metabolites if used as grain protectants. In the present study, we evaluated the lethal activity of 2-undecanone, acetic acid, trans-anethole, furfural, (E)-2-decenal and (E, E)-2,4-decadienal as wheat protectants for the management of larvae and adults of two important storage pests, Tenebrio molitor (Coleoptera: Tenebrionidae) and Trogoderma granarium (Coleoptera: Dermestidae). 2-undecanone caused 98.9% mortality to the exposed T. molitor adults at 1000 µl/kg wheat 7 days post-exposure, while acetic acid and furfural followed providing 94.4% and 92.2% mortality respectively. 2-Undecanone and (E)-2-decenal caused the highest mortalities to T. molitor larvae (i.e., 87.8% and 80.0% respectively) exposed to 1000 µl/kg wheat for 7 days. All T. granarium adults were dead at 1000 µl (E)-2-decenal or acetic acid/kg wheat 5 or 7 days post-exposure respectively. Complete (100%) mortality was assessed for larvae exposed to (E, E)-2,4-decadienal and (E)-2-decenal at 1000 µl/kg wheat after 4 and 6 days respectively. Our findings report for the first time that 2-undecanone, (E)-2-decenal, and (E, E)-2,4-decadienal are effective new candidate control agents of different developmental stages of T. molitor and T. granarium.


Coleoptera , Insecticides , Tenebrio , Animals , Larva , Triticum
6.
Plants (Basel) ; 10(1)2021 Jan 12.
Article En | MEDLINE | ID: mdl-33445672

Soil amendments with plant materials from Medicago species are widely acknowledged for a suppressive effect on plant-parasitic nematodes but their impact on beneficial components of soil nematofauna is still unknown. A study on potted tomato was carried out to investigate the short-time effects on the overall nematofauna of dry biomasses from six different Medicago species, i.e., M. sativa, M. heyniana, M. hybrida, M. lupulina, M. murex and M. truncatula, incorporated to natural soil at 10, 20, or 40 g kg-1 soil rates. All amendments resulted in a significant decrease of the total nematofauna biomass, whereas total abundance was significantly reduced only by M. heyniana, M. hybrida, and M. lupulina biomasses. Almost all the Medicago amendments significantly reduced the relative abundance of plant-parasites and root fungal feeders. All amendments significantly increased the abundance of bacterivores, whereas fungivores significantly increased only in soil amended with M. heyniana, M. lupulina and M. sativa plant materials. Mesorhabditis and Rhabditis were the most abundant genera of bacterivores, whereas Aphelenchoides and Aphelenchus prevailed among the fungivores. Predators were poorly influenced by all the tested Medicago biomasses, whereas the abundance of omnivores was negatively affected by M. heyniana and M. lupulina. Values of the Maturity Index and Sum Maturity Index were reduced by treatments with M. heyniana, M. hybrida, M. lupulina and M. sativa plant materials, whereas most of the tested amendments decreased values of the Channel Index while increasing those of the Enrichment Index. Enrichment and bacterivore footprints raised following soil addition with Medicago biomasses, whereas composite and fungivore footprints were significantly reduced. According to their overall positive effects on soil nematofauna, amendments with Medicago plant materials or their formulated derivatives could represent an additional tool for a sustainable management of plant-parasitic nematodes.

7.
Plants (Basel) ; 9(6)2020 Jun 12.
Article En | MEDLINE | ID: mdl-32545638

The olive tree (Olea europaea L.) is an emblematic, long-living fruit tree species of profound economic and environmental importance. This study is a literature review of articles published during the last 10 years about the role of beneficial microbes [Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPR), Plant Growth Promoting Fungi (PGPF), and Endophytes] on olive tree plant growth and productivity, pathogen control, and alleviation from abiotic stress. The majority of the studies examined the AMF effect using mostly Rhizophagus irregularis and Glomus mosseae species. These AMF species stimulate the root growth improving the resistance of olive plants to environmental and transplantation stresses. Among the PGPR, the nitrogen-fixing bacteria Azospirillum sp. and potassium- and phosphorous-solubilizing Bacillus sp. species were studied extensively. These PGPR species were combined with proper cultural practices and improved considerably olive plant's growth. The endophytic bacterial species Pseudomonas fluorescens and Bacillus sp., as well as the fungal species Trichoderma sp. were identified as the most effective biocontrol agents against olive tree diseases (e.g., Verticillium wilt, root rot, and anthracnose).

8.
Plants (Basel) ; 9(6)2020 May 30.
Article En | MEDLINE | ID: mdl-32486213

A total of 461 indigenous Streptomycetes strains recovered from various Greek rhizosphere habitats were tested for their bioactivity. All isolates were examined for their ability to suppress the growth of 12 specific target microorganisms. Twenty-six were found to exert antimicrobial activity and were screened for potential nematicidal action. S. monomycini ATHUBA 220, S. colombiensis ATHUBA 438, S. colombiensis ATHUBA 431, and S. youssoufensis ATHUBA 546 were proved to have a nematicidal effect and thus were further sequenced. Batch culture supernatants and solvent extracts were assessed for paralysis on Meloidogyne javanica and Meloidogyne incognita second-stage juveniles (J2). The solvent extracts of S. monomycini ATHUBA 220 and S. colombiensis ATHUBA 438 had the highest paralysis rates, so these Streptomycetes strains were further on tested for nematodes' biological cycle arrest on two Arabidopsis thaliana plants; the wild type (Col-0) and the katanin mutant fra2, which is susceptible to M. incognita. Interestingly, S. monomycini ATHUBA 220 and S. colombiensis ATHUBA 438 were able to negatively affect the M. incognita biological cycle in Col-0 and fra2 respectively, and increased growth in Col-0 upon M. incognita infection. However, they were ineffective against M. javanica. Fra2 plants were also proved susceptible to M. javanica infestation, with a reduced growth upon treatments with the Streptomyces strains. The nematicidal action and the plant-growth modulating abilities of the selected Streptomycetes strains are discussed.

9.
Toxins (Basel) ; 12(5)2020 05 12.
Article En | MEDLINE | ID: mdl-32408606

To date, there has been great demand for ecofriendly nematicides with beneficial properties to the nematode hosting plants. Great efforts are made towards the chemical characterization of botanical extracts exhibiting nematicidal activity against Meloidogyne spp., but only a small percentage of these data are actually used by the chemical industry in order to develop new formulates. On the other hand, the ready to use farmer produced water extracts based on edible plants could be a sustainable and economic solution for low income countries. Herein, we evaluate the nematicidal potential of Stevia rebaudiana grown in Greece against Meloidogyne incognita and Meloidogyne javanica, two most notorious phytoparasitic nematode species causing great losses in tomato cultivation worldwide. In an effort to recycle the plant's remnants, after leaves selection for commercial use, we use both leaves and wooden stems to test for activity. In vitro tests demonstrate significant paralysis activity of both plant parts' water extracts against the second-stage juvenile (J2) of the parasites; while, in vivo bioassays demonstrated the substantial efficacy of leaves' powder (95% at 1 g kg-1) followed by stems. Interestingly, the incorporation of up to 50 g powder/kg of soil is not phytotoxic, which demonstrates the ability to elevate the applied concentration of the nematicidal stevia powder under high inoculum level. Last but not least, the chemical composition analyses using cutting edge analytical methodologies, demonstrated amongst components molecules of already proven nematicidal activity, was exemplified by several flavonoids and essential oil components. Interestingly, and to our knowledge, for the flavonoids, morin and robinin, the anthocyanidin, keracyanin, and a napthalen-2-ol derivative is their first report in Stevia species.


Antinematodal Agents/pharmacology , Biological Control Agents/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Solanum lycopersicum/parasitology , Stevia , Tylenchoidea/drug effects , Animals , Antinematodal Agents/isolation & purification , Biological Control Agents/isolation & purification , Dose-Response Relationship, Drug , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Plant Leaves/parasitology , Plant Roots/parasitology , Plant Stems/parasitology , Stevia/chemistry , Tylenchoidea/growth & development
10.
Plants (Basel) ; 9(4)2020 Apr 01.
Article En | MEDLINE | ID: mdl-32244565

The intensification of agriculture has created concerns about soil degradation and toxicity of agricultural chemicals to non-target organisms. As a result, there is great urgency for discovering new ecofriendly tools for pest management and plant nutrition. Botanical matrices and their extracts and purified secondary metabolites have received much research interest, but time-consuming registration issues have slowed their adoption. In contrast, cultural practices such as use of plant matrices as soil amendments could be immediately used as plant protectants or organic fertilizers. Herein, we focus on some types of soil amendments of botanical origin and their utilization for nematicidal activity and enhancement of plant nutrition. The mode of action is discussed in terms of parasite control as well as plant growth stimulation.

11.
Food Chem Toxicol ; 140: 111312, 2020 Jun.
Article En | MEDLINE | ID: mdl-32247803

Since time immemorial, the oleo-gum-resins of Ferula assa-foetida and F. gummosa are used in the traditional medical systems as well as in foodstuffs, perfumery and cosmetics. In the present study, we explored the insecticidal efficacy of the essential oils obtained from these oleo-gum-resins to widen their fields of industrial applications. The two essential oils were mainly composed of sulfides [sec-butyl (Z)-propenyl disulfide, sec-butyl (E)-propenyl disulfide, sec-butyl (Z)-propenyl trisulfide and sec-butyl (E)-propenyl trisulfide)] and monoterpenes (α-pinene, ß-pinene and ß-phellandrene), respectively, as determined by GC-MS analysis. The two essential oils were assayed for toxicity on a panel of insects, represented by species of public health relevance (Culex quinquefasciatus and Musca domestica), agricultural (Spodoptera littoralis) and stored-product pests (Prostephanus truncatus and Trogoderma granarium). The ecotoxicological effects of the essential oils were assessed on the aquatic microcrustacean Daphnia magna and the earthworm Eisenia fetida, as well as on human cells. Overall, the two essential oils were effective against important insect pests and vectors. On the other hand, they resulted cytotoxic to fibroblasts and non-target aquatic microcrustaceans. Thus, further insights are needed to determine the full spectrum of their eco-toxicological effects.


Ferula/chemistry , Insecta/drug effects , Insecticides/pharmacology , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Animals , Gas Chromatography-Mass Spectrometry , Insecticides/toxicity , Oils, Volatile/toxicity , Plant Oils/toxicity
12.
Food Chem Toxicol ; 139: 111255, 2020 May.
Article En | MEDLINE | ID: mdl-32165233

The use of chemical pesticides to preserve food commodities is a global issue of concern due to their negative effect on the environment and public health. In recent years, the European Union is trying to reduce their use, favoring alternative or complementary approaches based on natural products. In this scenario, plant-borne essential oils (EOs) represent valid options for Integrated Pest Management (IPM) programs. In the present study, the insecticidal effect of eight EOs obtained from plants from different parts of the world, namely Mentha longifolia, Dysphania ambrosioides, Carlina acaulis, Trachyspermum ammi, Pimpinella anisum, Origanum syriacum, Cannabis sativa and Hazomalania voyronii, were evaluated against two stored-product insect species of economic importance, Prostephanus truncatus and Trogoderma granarium. Simulating a small-scale stored-product conservation environment, an AG-4 airbrush was used to spray maize and wheat with 500 and 1000 ppm of EOs, then T. granarium and P. truncatus were exposed to the stored products and mortality was evaluated over selected time intervals (4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days). The EO of C. acaulis exhibited high efficacy against P. truncatus adults at both tested concentrations by killing > 97% of the individuals exposed to treated maize within 3 days at 500 ppm. The EO of D. ambrosioides eliminated all T. granarium adults exposed to 1000 ppm-treated wheat 2 days post-exposure. At this exposure interval, 91.1% of the exposed T. granarium adults died on wheat treated with 1000 ppm of C. acaulis EO. The EO of M. longifolia at both tested concentrations was the most effective against T. granarium larvae, leading to 97.8% mortality at 500 ppm after 3 days of exposure, and 100% mortality at 1000 pm 2 days post-exposure. At 1000 ppm, the EOs of D. ambrosioides and P. anisum led to 95.6 and 90% mortality, respectively, to larvae exposed to treated wheat for 7 days. Overall, our research shed light on the potential of selected EOs, with special reference to M. longifolia, D. ambrosioides, C. acaulis and P. anisum, which could be considered further to develop effective and alternative grain protectants to manage P. truncatus and T. granarium infestations.


Coleoptera/drug effects , Insecta/drug effects , Insecticides/pharmacology , Oils, Volatile/pharmacology , Animals , Insecta/metabolism , Larva/drug effects , Pesticides/pharmacology , Triticum/parasitology , Zea mays/parasitology
13.
Plants (Basel) ; 9(2)2020 Feb 06.
Article En | MEDLINE | ID: mdl-32041220

In recent years, interest has surged in the development of plant extracts into botanical nematicides as ecofriendly plant protection products. Aromatic plants are maybe the most studied category of botanicals used in this direction and the yielding essential oils are obtained on a commodity scale by hydro distillation. Nevertheless, can the bioactivity of aromatic plants always be attributed to the terpenes content? What would it mean for soil microcosms to bear the treatment of an essential oil to cure against Meloidogyne sp.? Are there other extraction procedures to prepare more ecofriendly botanical products starting from an aromatic material? Lemon thyme is studied herein for the first time for its nematicidal potential. We compare the efficacy of lemon thyme powder, macerate, water extract and essential oil to control Meloidogyne incognita (Chitwood) and Meloidogyne javanica (Chitwood), and we additionally study the secondary effects on soil microbes and free-living nematodes, as well as on tomato plant growth. According to our results lemon thyme powder enhances tomato plants' growth in a dose-response manner and when it is incorporated in soil at 1 g kg-1, it exhibits nematicidal activity at a 95% level on M. incognita. The water extract yielding from the same dose is nematicidal only if it is left unfiltered; otherwise only a paralysis effect is demonstrated but inside the soil the biological cycle of the pest is not arrested. The essential oil is good both in performing paralysis and biological cycle arrest, but it detrimentally lowers abundances of bacterial and fungal feeding nematodes. On the contrary, lemon thyme powder and unfiltered water extract augments the bacterial biomass, while the latter also increases the bacterivorous nematodes. Overall, the bio fertilizing lemon thyme powder and its unfiltered water extract successfully control root knot nematodes and are beneficial to soil microbes and saprophytic nematodes.

14.
Int J Mol Sci ; 20(21)2019 Nov 02.
Article En | MEDLINE | ID: mdl-31684028

Meloidogyne incognita is a root knot nematode (RKN) species which is among the most notoriously unmanageable crop pests with a wide host range. It inhabits plants and induces unique feeding site structures within host roots, known as giant cells (GCs). The cell walls of the GCs undergo the process of both thickening and loosening to allow expansion and finally support nutrient uptake by the nematode. In this study, a comparative in situ analysis of cell wall polysaccharides in the GCs of wild-type Col-0 and the microtubule-defective fra2 katanin mutant, both infected with M. incognita has been carried out. The fra2 mutant had an increased infection rate. Moreover, fra2 roots exhibited a differential pectin and hemicellulose distribution when compared to Col-0 probably mirroring the fra2 root developmental defects. Features of fra2 GC walls include the presence of high-esterified pectic homogalacturonan and pectic arabinan, possibly to compensate for the reduced levels of callose, which was omnipresent in GCs of Col-0. Katanin severing of microtubules seems important in plant defense against M. incognita, with the nematode, however, to be nonchalant about this "katanin deficiency" and eventually induce the necessary GC cell wall modifications to establish a feeding site.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Wall/metabolism , Giant Cells/metabolism , Katanin/metabolism , Plant Roots/metabolism , Animals , Arabidopsis/genetics , Arabidopsis/parasitology , Arabidopsis Proteins/genetics , Cell Wall/parasitology , Gene Expression Regulation, Plant , Giant Cells/parasitology , Host-Parasite Interactions , Katanin/genetics , Microtubules/metabolism , Mutation , Pectins/metabolism , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/parasitology , Polysaccharides/metabolism , Tylenchoidea/physiology
15.
Plants (Basel) ; 8(11)2019 Oct 23.
Article En | MEDLINE | ID: mdl-31652877

To date, it is mandatory for ecofriendly pest-management tools to be used in agriculture. Whey is a dairy-processing waste, a plant and soil chemical and fungicidal basic substance. The beneficial effect of whey on soil microorganisms, enzymatic activities, and free-living nematodes-combined with its toxic activity on the plant parasites-forms root knot nematodes. In this study, this finding is reported for the first time. A drip-irrigating tomato plant combined with whey in water at 3.125% (v/w) and 6.25% (v/w) dose dependently promoted Gram+ and Gram- bacteria, actinomycetes, and fungi biomass. Respectively, whey treatment and duration augmented the bacterial feeding nematodes along with the soil enzymatic activities, e.g., alkaline phosphatase, dehydrogenase, and urease. The counterpart for these soil organisms' and enzymes' functionality is the decomposition of organic matter, nutrient mineralization and cycling. Additionally, whey applied at 6.25% (v/w) every 10 days in a field experiment exhibited an efficacy of 70% on root knot nematodes. It is calculated that the EC50/3d value paralyzes in vitro Meloidogyne javanica, which was 3.2% (v/v). Conclusively, the soil application of whey could be a sustainable and ecofriendly method to combat the root knot nematodes and additionally to enhance soil biotic components.

16.
J Nematol ; 50(3): 317-328, 2018.
Article En | MEDLINE | ID: mdl-30451417

We investigated Solanum nigrum (seeds) and Datura stramonium (shoots) against root-knot nematodes in terms of J2 paralysis and egg hatch inhibition (methanol extract), as well as inhibition of nematode development in host roots (soil amending with either S. nigrum seeds' or D . stramonium shoots' meal). Datura stramonium was found equally effective at inhibiting motility of Meloidogyne incognita and Meloidogyne javanica (both EC 50 = 427 µg mL -1 at 3 day), but inhibition occurred more quickly for M. incognita (1 day). Solanum nigrum was faster and more effective at inhibiting motility of M. incognita than M. javanica (EC 50 = 481 and 954 µg mL -1 at 3 day, respectively). Datura stramonium was slower, but eventually more potent in decreasing egg hatch and cell division in M. incognita eggs, than S. nigrum . Specifically, D. stramonium significantly inhibited cell division in eggs immersed in at least 100 and 1 µg mL -1 at Day 6 and 10, respectively. Solanum nigrum impeded cell division in un-differentiated eggs immersed in not less than 10 and 100 µg mL -1 after days 2 and 6, respectively. Both extracts were similar in suppressing J2 exclosure but D. stramonium was effective in smaller test concentrations. Specifically, D. stramonium suppressed J2 emerging from eggs immersed in 10 µg mL -1 at day2, and in at least 1 µg mL -1 at day 6. Solanum nigrum significantly reduced J2 hatch from eggs immersed in a minimum of 100 µg mL -1 at day 2 and not less than 1,000 µg mL -1 at day 6. In pots, powdered S. nigrum seeds meal was more active than D. stramonium and the respective EC 50 females/ g values for M. incognita were 1.13 and 11.4 mg g -1 of soil, respectively. The chemical composition of active extracts was determined after derivatization by GC-MS. Chemical analysis of active extracts showed the presence of fatty acids with known nematicidal activity.

17.
J Environ Sci Health B ; 53(8): 493-502, 2018 Aug 03.
Article En | MEDLINE | ID: mdl-29708833

Plant-parasitic nematodes, such as Meloidogyne incognita, cause serious damage to various agricultural crops worldwide, and their control necessitates environmentally safe measures. We have studied the effects of plant secondary metabolites on M. incognita locomotion, as it is an important factor affecting host inoculation inside the soil. We compared the effects to the respective behavioral responses of the model saprophytic nematode Caenorhabditis elegans. The tested botanical nematicides, all reported to be active against Meloidogyne sp. in our previous works, are small molecular weight molecules (acids, alcohols, aldehydes, and ketones). Here, we specifically report on the attractant or repellent properties of trans-anethole, (E,E)-2,4-decadienal, (E)-2-decenal, fosthiazate, and 2-undecanone. The treatments for both nematode species were made at sublethal concentration levels, namely, 1 mM (

Antinematodal Agents/pharmacology , Caenorhabditis elegans/physiology , Taxis Response/drug effects , Tylenchoidea/physiology , Aldehydes/pharmacology , Alkenes/pharmacology , Animals , Caenorhabditis elegans/drug effects , Carbamates/pharmacology , Ketones/pharmacology , Organophosphorus Compounds/pharmacology , Thiazolidines/pharmacology , Tylenchoidea/drug effects
18.
J Nematol ; 48(4): 248-260, 2016 Dec.
Article En | MEDLINE | ID: mdl-28154431

The use of natural compounds to control phytonematodes is significantly increasing, as most of the old synthetic pesticides have been banned due to their eco-hostile character. Plant secondary metabolites are now evaluated as biologically active molecules against Meloidogyne spp. but their target site in the nematode body is rarely specified. Herein, we report on the ultrastructure modifications of the Meloidogyne incognita J2 after treatment with nematicidal plant secondary metabolites, that is acetic acid, (E)-2-decenal, and 2-undecanone. The commercial nematicide fosthiazate acting on acetylcholinesterase was used as control. For this reason, scanning electron microscopy and transmission electron microscopy have been employed. The acetic acid mainly harmed the cuticle, degenerated the nuclei of pseudocoel cells, and vacuolised the cytoplasm. The (E)-2-decenal and 2-undecanone did neither harm to the cuticle nor the somatic muscles but they degenerated the pseudocoel cells. (E)-2-decenal caused malformation of somatic muscles. According to the above, the nematicidal compounds seem to enter the nematode body principally via the digestive system rather than the cuticle, since the main part of the damage is internal.

19.
Pest Manag Sci ; 72(1): 125-30, 2016 Jan.
Article En | MEDLINE | ID: mdl-25641877

BACKGROUND: With the ultimate goal of identifying new compounds active against root-knot nematodes, a set of 14 substituted chalcones were synthesised, starting from acetophenones. These chalcones and various acetophenones were tested in vitro against Meloidogyne incognita. RESULTS: The most potent acetophenones were 4-nitroacetophenone and 4-iodoacetophenone, with EC(50/24 h) values of 12 ± 5 and 15 ± 4 mg L(-1) respectively, somewhat weaker than that of the chemical control fosthiazate in our previous experiments (EC(50/24 h) 0.4 ± 0.3 mg L(-1)). When we converted the acetophenones to chalcones, the nematicidal activity differed, based on their substitution pattern. The condensation of 4-nitroacetophenone with 2,4,6-trihydroxybenzaldehyde to give the corresponding chalcone (E)-1-(4-nitrophenyl)-3-(2,4,6-trihydroxyphenyl)prop-2-en-1-one led to a slight reduction in activity (EC(50/24 h) value 25 ± 17 mg L(-1)). Moreover, (E)-3-(2-hydroxy-5-iodophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one showed better activity (EC(50/24) h value 26 ± 15 mg L(-1)) than 4-methoxyacetophenone (EC(50/24 h) value 43 ± 10 mg L(-1)). CONCLUSIONS: Acetophenones and chalcones may represent good leads in the discovery of new nematicidal compounds and may have potential use in crop management as active ingredients.


Acetophenones/pharmacology , Antinematodal Agents/pharmacology , Chalcones/pharmacology , Tylenchoidea/drug effects , Acetophenones/chemical synthesis , Acetophenones/chemistry , Animals , Antinematodal Agents/chemical synthesis , Antinematodal Agents/chemistry , Chalcones/chemical synthesis , Chalcones/chemistry , Structure-Activity Relationship
20.
PLoS One ; 10(10): e0141272, 2015.
Article En | MEDLINE | ID: mdl-26485025

The biological diversity of nature is the source of a wide range of bioactive molecules. The natural products, either as pure compounds or as standardized plant extracts, have been a successful source of inspiration for the development of new drugs. The present work was carried out to investigate the cytotoxicity, antiviral and antimycobacterial activity of the methanol extract and of four identified limonoids from the fruits of Melia azedarach (Meliaceae). The extract and purified limonoids were tested in cell-based assays for antiviral activity against representatives of ssRNA, dsRNA and dsDNA viruses and against Mycobacterium tuberculosis. Very interestingly, 3-α-tigloyl-melianol and melianone showed a potent antiviral activity (EC50 in the range of 3-11µM) against three important human pathogens, belonging to Flaviviridae family, West Nile virus, Dengue virus and Yellow Fever virus. Mode of action studies demonstrated that title compounds were inhibitors of West Nile virus only when added during the infection, acting as inhibitors of the entry or of a very early event of life cycle. Furthermore, 3-α-tigloyl-melianol and methyl kulonate showed interesting antimycobacterial activity (with MIC values of 29 and 70 µM respectively). The limonoids are typically lipophilic compounds present in the fruits of Melia azeradach. They are known as cytotoxic compounds against different cancer cell lines, while their potential as antiviral and antibacterial was poorly investigated. Our studies show that they may serve as a good starting point for the development of novel drugs for the treatment of infections by Flaviviruses and Mycobacterium tuberculosis, for which there is a continued need.


Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Flavivirus/drug effects , Fruit/chemistry , Limonins/pharmacology , Melia azedarach/chemistry , Mycobacterium tuberculosis/drug effects , Plant Extracts/pharmacology , Flavivirus Infections/drug therapy , Flavivirus Infections/virology , Humans , Limonins/chemistry , Limonins/isolation & purification , Tuberculosis/drug therapy , Tuberculosis/microbiology
...