Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Hematol ; 72: 14-26.e1, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30797950

RESUMEN

More than 2million human erythroblasts extrude their nuclei every second in bone marrow under hypoxic conditions (<7% O2). Enucleation requires specific signal transduction pathways and the local assembly of contractile actomyosin rings. However, the energy source driving these events has not yet been identified. We examined whether different O2 environments (hypoxic [5% O2] and normoxic [21% O2] conditions) affected human CD34+ cell erythroblast differentiation. We also investigated the regulatory mechanisms underlying energy production in erythroblasts during terminal differentiation under 5% or 21% O2 conditions. The results obtained revealed that the enucleation ratio and intracellular levels of adenosine triphosphate (ATP), lactate dehydrogenase (LDH) M3H, and hypoxia-inducible factor 1α in erythroblasts during terminal differentiation were higher under the 5% O2 condition than under the 21% O2 condition. We also found that the enzymatic inhibition of glyceraldehyde 3-phosphate dehydrogenase and LDH, key enzymes in anaerobic glycolysis, blocked the proliferation of colony-forming units-erythroid and enucleation of erythroblasts, and also reduced ATP levels in erythroblasts under both hypoxic and normoxic conditions. Under both conditions, phosphorylation of the Ser232, Ser293, and Ser300 residues in pyruvate dehydrogenase (inactive state of the enzyme) in erythroblasts was involved in regulating the pathway governing energy metabolism during erythroid terminal differentiation. This reaction may be mediated by pyruvate dehydrogenase kinase (PDK) 4, the major PDK isozyme expressed in erythroblasts undergoing enucleation. Collectively, these results suggest that ATP produced by anaerobic glycolysis is the main source of energy for human erythroblast enucleation in the hypoxic bone marrow environment.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Eritroblastos/metabolismo , Glucólisis/fisiología , Anaerobiosis/fisiología , Antígenos CD34/metabolismo , Eritroblastos/citología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Fosforilación/fisiología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo
2.
Int J Hematol ; 108(2): 130-138, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29691802

RESUMEN

Although the neuronal protein α-synuclein (α-syn) is thought to play a central role in the pathogenesis of Parkinson's disease (PD), its physiological function remains unknown. It is known that α-syn is also abundantly expressed in erythrocytes. However, its role in erythrocytes is also unknown. In the present study, we investigated the localization of α-syn in human erythroblasts and erythrocytes. Protein expression of α-syn increased during terminal differentiation of erythroblasts (from day 7 to day 13), whereas its mRNA level peaked at day 11. α-syn was detected in the nucleus, and was also seen in the cytoplasm and at the plasma membrane after day 11. In erythroblasts undergoing nucleus extrusion (day 13), α-syn was detected at the periphery of the nucleus. Interestingly, we found that recombinant α-syn binds to trypsinized inside-out vesicles of erythrocytes and phosphatidylserine (PS) liposomes. The dissociation constants for binding to PS/phosphatidylcholine (PC) liposomes of N-terminally acetylated (NAc) α-syn was lower than that of non NAc α-syn. This suggests that N-terminal acetylation plays a significant functional role. The results of the present study collectively suggest that α-syn is involved in the enucleation of erythroblasts and the stabilization of erythroid membranes.


Asunto(s)
Diferenciación Celular/genética , Eritroblastos/metabolismo , Eritrocitos/metabolismo , Eritrocitos/fisiología , alfa-Sinucleína/metabolismo , Acetilación , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Eritroblastos/citología , Eritrocitos/citología , Expresión Génica , Humanos , Liposomas/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Unión Proteica , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
3.
Biochem Biophys Res Commun ; 479(4): 860-867, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27671200

RESUMEN

Lactate dehydrogenase (LDH) is a glycolytic enzyme that catalyzes the final step of glycolysis and produces NAD+. In somatic cells, LDH forms homotetramers and heterotetramers that are encoded by two different genes: LDHA (skeletal muscle type, M) and LDHB (heart type, H). Analysis of LDH isozymes is important for understanding the physiological role of homotetramers and heterotetramers and for optimizing inhibition of their enzymatic activity as it may result in distinct effects. Previously, we reported that hydroxychloroquine (HCQ) inhibited LDH activity, but we did not examine isozyme specificity. In the present study, we isolated heterotetrameric LDH (H2M2) from swine brain, determined its kinetic and thermodynamic properties, and examined the effect of HCQ on its activity compared to homotetrameric LDH isozymes. We show that: (1) the Km values for H2M2-mediated catalysis of pyruvate or lactate were intermediate compared to those for the homotetrameric isozymes, M4 and H4 whereas the Vmax values were similar; (2) the Km and Vmax values for H2M2-mediated catalysis of NADH were not significantly different among LDH isozymes; (3) the values for activation energy and van't Hoff enthalpy changes for pyruvate reduction of H2M2 were intermediate compared to those for the homotetrameric isozymes; (4) the temperature for half residual activity of H2M2 was closer to that for M4 than for H4. We also show that HCQ had different affinities for various LDH isozymes.


Asunto(s)
L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo , Porcinos/metabolismo , Animales , Encéfalo/enzimología , Inhibidores Enzimáticos/farmacología , Hidroxicloroquina/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Estructura Cuaternaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Termodinámica
4.
Rinsho Ketsueki ; 57(7): 933-43, 2016 07.
Artículo en Japonés | MEDLINE | ID: mdl-27498741

RESUMEN

Two key questions remain unanswered in the erythropoiesis field: Why and how do erythroblasts enucleate in mammalian species? Recent studies have unveiled the roles of various molecules, cytoskeletal proteins, motor proteins, vesicle transport, signaling pathways, lipid rafts and actomyosin ring contraction in the enucleation process. However, few reports provide insights into the fitness benefit for mammalian species of having anucleate erythrocytes. Herein, we discuss the biological significance of enucleation of human erythroblasts based on our recent results and on evolutionary considerations related to the biology of hemoglobin and the comparative biochemistry of erythrocyte membrane cytoskeletal proteins, such as protein 4.1R. We specifically focus on the Mesozoic era, a geological period during which dinosaurs and the ancestors of mammalian species coexisted. Approximately 200 million years ago, at the beginning of this era, the earth's atmosphere was hypoxic. Interestingly, animals adopted different respiration systems to adapt to this hypoxic environment. Recent studies using state-of-the-art technologies have shown that dinosaurs might have had nucleated erythrocytes. After dinosaurs became extinct about 65.5 million years ago, their respiration system was maintained by birds. We propose a new adaptive theory that establishes a correlation between evolution towards nucleated or anucleate erythrocytes depending on organism respiration systems during the Mesozoic era.


Asunto(s)
Eritroblastos/citología , Eritroblastos/metabolismo , Filogenia , Animales , Metabolismo Energético , Eritropoyesis , Evolución Molecular , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos
5.
J Biochem ; 160(5): 299-308, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27311998

RESUMEN

It is widely believed that enzymatic activities in ectothermic organisms adapt to environmental temperatures. However, to date, no study has thoroughly compared multiple thermodynamic enzymatic characteristics across species living in dramatically different environments. To start to address this gap, we compared the characteristics of lactate dehydrogenase (LDH) purified from the muscles from slime flounder Microstomus achne white muscle and bovine skeletal muscle (bM4) and heart. The K m and V max for pyruvate reduction were about three times higher for M. achne LDH than bM4 Surprisingly, maximum LDH activity was observed at ∼30 °C and ∼50 °C for M. achne and bovine LDHs, respectively, suggesting that the maximum enzymatic activity of LDH is set at a temperature ∼20 °C higher than environmental or body temperature across species. Although K m and V max values of these LDHs increased with temperature, the V max/K m ratio for M. achne LDH and bM4 was independent. Differential scanning calorimetry and enthalpy change measurements confirmed that M. achne and bovine muscle-specific LDHs shared similar properties. Based on the present findings and previous reports, we hypothesize that the function and thermodynamic properties of muscle LDH are highly conserved between a teleost adapted to cold, M. achne, and bovine.


Asunto(s)
Aclimatación/fisiología , Proteínas de Peces , Lenguado/metabolismo , L-Lactato Deshidrogenasa , Proteínas Musculares , Animales , Bovinos , Proteínas de Peces/química , Proteínas de Peces/metabolismo , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Especificidad de la Especie
6.
Biochem Biophys Res Commun ; 473(4): 999-1004, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27049308

RESUMEN

Hydroxychloroquine (HCQ) is a widely used drug in the treatment of autoimmune diseases, such as arthritis and systemic lupus erythematosus. It has also been prescribed for the treatment of malaria owing to its lower toxicity compared to its closely related compound chloroquine (CQ). However, the mechanisms of action of HCQ in erythrocytes (which bind preferentially this drug) have not been documented and the reasons underlying the lower side effects of HCQ compared to CQ remain unclear. Here we show that, although the activity of erythrocyte lactate dehydrogenase (LDH), but not GAPDH, was inhibited by both HCQ and CQ in vitro, LDH activity in erythrocytes incubated with 20 mM HCQ was not significantly reduced within 5 h in contrast to CQ did. Using HCQ coupled Sepharose chromatography (HCQ-Sepharose), we identified Band 3, spectrin, ankyrin, protein 4.1R and protein 4.2 as HCQ binding proteins in human erythrocyte plasma membrane. Recombinant cytoplasmic N-terminal 43 kDa domain of Band 3 bound to HCQ-Sepharose and was eluted with 40 mM (but not 20 mM) HCQ. Band 3 transport activity was reduced by only 23% in the presence of 20 mM HCQ. Taken together, these data demonstrate that HCQ binds to the cytoplasmic N-terminal domain of Band 3 in human erythrocytes but does not inhibit dramatically its transport activity. We hypothesize that the trapping of HCQ on Band 3 contributes to the lower side effects of the drug on energy production in erythrocytes.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Hidroxicloroquina/farmacología , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/enzimología , Humanos , Hidroxicloroquina/química , Hidroxicloroquina/metabolismo , Hidroxicloroquina/toxicidad , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Dominios Proteicos
7.
Exp Hematol ; 44(4): 247-56.e12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26724640

RESUMEN

Mammalian erythroblasts undergo enucleation through a process thought to be similar to cytokinesis. Microtubule-organizing centers (MTOCs) mediate organization of the mitotic spindle apparatus that separates the chromosomes during mitosis and are known to be crucial for proper cytokinesis. However, the role of MTOCs in erythroblast enucleation remains unknown. We therefore investigated the effect of various MTOC inhibitors on cytokinesis and enucleation using human colony-forming units-erythroid (CFU-Es) and mature erythroblasts generated from purified CD34(+) cells. We found that erythro-9-[3-(2-hydroxynonyl)]adenine (EHNA), a dynein inhibitor, and monastrol, a kinesin Eg5 inhibitor, as well as various inhibitors of MTOC regulators, including ON-01910 (Plk-1), MLN8237 (aurora A), hesperadin (aurora B), and LY294002 (PI3K), all inhibited CFU-E cytokinesis. Among these inhibitors, however, only EHNA blocked enucleation. Moreover, terminally differentiated erythroblasts expressed only dynein; little or none of the other tested proteins was detected. Over the course of the terminal differentiation of human erythroblasts, the fraction of cells with nuclei at the cell center declined, whereas the fraction of polarized cells, with nuclei shifted to a position near the plasma membrane, increased. Dynein inhibition impaired nuclear polarization, thereby blocking enucleation. These data indicate that dynein plays an essential role not only in cytokinesis but also in enucleation. We therefore conclude that human erythroblast enucleation is a process largely independent of MTOCs, but dependent on dynein.


Asunto(s)
Diferenciación Celular , Dineínas/metabolismo , Eritroblastos/citología , Eritroblastos/metabolismo , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Dineínas/antagonistas & inhibidores , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/efectos de los fármacos , Células Precursoras Eritroides/metabolismo , Eritropoyesis , Expresión Génica , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Centro Organizador de los Microtúbulos/metabolismo , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Sulfonas/farmacología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
Biochem Biophys Res Commun ; 446(2): 434-40, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24607279

RESUMEN

Membrane skeletal protein 4.1R(80) plays a key role in regulation of erythrocyte plasticity. Protein 4.1R(80) interactions with transmembrane proteins, such as glycophorin C (GPC), are regulated by Ca(2+)-saturated calmodulin (Ca(2+)/CaM) through simultaneous binding to a short peptide (pep11; A(264)KKLWKVCVEHHTFFRL) and a serine residue (Ser(185)), both located in the N-terminal 30 kDa FERM domain of 4.1R(80) (H·R30). We have previously demonstrated that CaM binding to H·R30 is Ca(2+)-independent and that CaM binding to H·R30 is responsible for the maintenance of H·R30 ß-sheet structure. However, the mechanisms responsible for the regulation of CaM binding to H·R30 are still unknown. To investigate this, we took advantage of similarities and differences in the structure of Coracle, the Drosophila sp. homologue of human 4.1R(80), i.e. conservation of the pep11 sequence but substitution of the Ser(185) residue with an alanine residue. We show that the H·R30 homologue domain of Coracle, Cor30, also binds to CaM in a Ca(2+)-independent manner and that the Ca(2+)/CaM complex does not affect Cor30 binding to the transmembrane protein GPC. We also document that both H·R30 and Cor30 bind to phosphatidylinositol-4,5 bisphosphate (PIP2) and other phospholipid species and that that PIP2 inhibits Ca(2+)-free CaM but not Ca(2+)-saturated CaM binding to Cor30. We conclude that PIP2 may play an important role as a modulator of apo-CaM binding to 4.1R(80) throughout evolution.


Asunto(s)
Calcio/química , Calmodulina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/farmacología , Animales , Sitios de Unión , Calmodulina/química , Proteínas del Citoesqueleto/química , Humanos , Proteínas de la Membrana/química , Fosfatidilinositol 4,5-Difosfato/química , Unión Proteica/efectos de los fármacos
10.
Cell Biochem Biophys ; 69(1): 7-19, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24081810

RESUMEN

Calmodulin (CaM) binds to the FERM domain of 80 kDa erythrocyte protein 4.1R (R30) independently of Ca(2+) but, paradoxically, regulates R30 binding to transmembrane proteins in a Ca(2+)-dependent manner. We have previously mapped a Ca(2+)-independent CaM-binding site, pep11 (A(264)KKLWKVCVEHHTFFR), in 4.1R FERM domain and demonstrated that CaM, when saturated by Ca(2+) (Ca(2+)/CaM), interacts simultaneously with pep11 and with Ser(185) in A(181)KKLSMYGVDLHKAKD (pep9), the binding affinity of Ca(2+)/CaM for pep9 increasing dramatically in the presence of pep11. Based on these findings, we hypothesized that pep11 induced key conformational changes in the Ca(2+)/CaM complex. By differential scanning calorimetry analysis, we established that the C-lobe of CaM was more stable when bound to pep11 either in the presence or absence of Ca(2+). Using nuclear magnetic resonance spectroscopy, we identified 8 residues in the N-lobe and 14 residues in the C-lobe of pep11 involved in interaction with CaM in both of presence and absence of Ca(2+). Lastly, Kratky plots, generated by small-angle X-ray scattering analysis, indicated that the pep11/Ca(2+)/CaM complex adopted a relaxed globular shape. We propose that these unique properties may account in part for the previously described Ca(2+)/CaM-dependent regulation of R30 binding to membrane proteins.


Asunto(s)
Calcio/metabolismo , Calmodulina/química , Proteínas del Citoesqueleto/química , Proteínas de la Membrana/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calmodulina/metabolismo , Cationes Bivalentes , Pollos , Proteínas del Citoesqueleto/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mapeo Peptídico , Péptidos/síntesis química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinámica
11.
J Biochem ; 154(3): 249-56, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23687308

RESUMEN

In this study, we have investigated the specific binding proteins of Zinc-L-carnosine (Polaprezinc) using Polaprezinc-affinity column chromatography in vitro. A protein having a 70-kDa molecular mass was eluted by the linear gradient of 0-1.0 mM Polaprezinc from the affinity column and the protein was identified as the molecular chaperone HSP70 by immunoblotting. The chaperone activity of HSP70 was completely suppressed by Polaprezinc. The ATPase activity of HSP70 was affected to some extent by the reagent. In the circular dichroism (CD) spectrum, the secondary structure of HSP70 was changed in the presence of Polaprezinc, i.e. it decreased in the α-helix. We have determined the Polaprezinc-binding domain of HSP70 by using recombinant HSP70N- and C-domains. Although Polaprezinc could bind to both the N-terminal and the C-terminal of HSP70, the HSP70N-domain has a high affinity to the drug. Regarding the peptide cleavage of the HSP70N- and C-domains with proteinase K, the intact HSP70N still remained in the presence of Polaprezinc. On the other hand, the quantity of the intact C-domain slightly decreased under the same conditions along with the newly digested small peptides appeared. It has been suggested that Polaprezinc binds to HSP70 especially in the N-domains, suppresses the chaperone activity and delays an ATPase activities of HSP70.


Asunto(s)
Adenosina Trifosfatasas/química , Carnosina/análogos & derivados , Proteínas HSP70 de Choque Térmico/química , Compuestos Organometálicos/química , Adenosina Trifosfatasas/aislamiento & purificación , Animales , Sitios de Unión , Química Encefálica , Carnosina/química , Cromatografía de Afinidad , Dicroismo Circular , Endopeptidasa K/química , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Cinética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Porcinos , Compuestos de Zinc/química
12.
Cell Biochem Biophys ; 66(3): 545-58, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23354586

RESUMEN

Protein 4.1G (4.1G) is a widely expressed member of the protein 4.1 family of membrane skeletal proteins. We have previously reported that Ca(2+)-saturated calmodulin (Ca(2+)/CaM) modulates 4.1G interactions with transmembrane and membrane-associated proteins through binding to Four.one-ezrin-radixin-moesin (4.1G FERM) domain and N-terminal headpiece region (GHP). Here we identify a novel mechanism of Ca(2+)/CaM-mediated regulation of 4.1G interactions using a combination of small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, and circular dichroism spectroscopy analyses. We document that GHP intrinsically disordered coiled structure switches to a stable compact structure upon binding of Ca(2+)/CaM. This dramatic conformational change of GHP inhibits in turn 4.1G FERM domain interactions due to steric hindrance. Based upon sequence homologies with the Ca(2+)/CaM-binding motif in protein 4.1R headpiece region, we establish that the 4.1G S(71)RGISRFIPPWLKKQKS peptide (pepG) mediates Ca(2+)/CaM binding. As observed for GHP, the random coiled structure of pepG changes to a relaxed globular shape upon complex formation with Ca(2+)/CaM. The resilient coiled structure of pepG, maintained even in the presence of trifluoroethanol, singles it out from any previously published CaM-binding peptide. Taken together, these results show that Ca(2+)/CaM binding to GHP, and more specifically to pepG, has profound effects on other functional domains of 4.1G.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
14.
Biochem Biophys Res Commun ; 423(2): 360-5, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22664109

RESUMEN

Although the 3D structure of the Ca(2+)-bound CaM (Ca(2+)/CaM) complex with the antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7), has been resolved, the dynamic changes in Ca(2+)/CaM structure upon interaction with W-7 are still unknown. We investigated time- and temperature-dependent dynamic changes in Ca(2+)/CaM interaction with W-7 in physiological conditions using one- and two-dimensional Fourier-transformed infrared spectroscopy (2D-IR). We observed changes in the α-helix secondary structure of Ca(2+)/CaM when complexed with W-7 at a molar ratio of 1:2, but not at higher molar ratios (between 1:2 and 1:5). Kinetic studies revealed that, during the initial 125s at 25°C, Ca(2+)/CaM underwent formation of secondary coil and turn structures upon binding to W-7. Variations in temperature that induced significant changes in the structure of the Ca(2+)/CaM complex failed to do so when Ca(2+)/CaM was complexed with W-7. We concluded that W-7 induced stepwise conformational changes in Ca(2+)/CaM that resulted in a rigidification of the complex and its inability to interact with target proteins and/or polypeptides.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Calcio/química , Calmodulina/antagonistas & inhibidores , Calmodulina/química , Inhibidores Enzimáticos/química , Sulfonamidas/química , Animales , Bovinos , Inhibidores Enzimáticos/farmacología , Estructura Secundaria de Proteína , Sulfonamidas/farmacología
15.
Biochem J ; 446(3): 427-35, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22731252

RESUMEN

NHE1 (Na(+)/H(+) exchanger isoform 1) has been reported to be hyperactive in 4.1R-null erythrocytes [Rivera, De Franceschi, Peters, Gascard, Mohandas and Brugnara (2006) Am. J. Physiol. Cell Physiol. 291, C880-C886], supporting a functional interaction between NHE1 and 4.1R. In the present paper we demonstrate that 4.1R binds directly to the NHE1cd (cytoplasmic domain of NHE1) through the interaction of an EED motif in the 4.1R FERM (4.1/ezrin/radixin/moesin) domain with two clusters of basic amino acids in the NHE1cd, K(519)R and R(556)FNKKYVKK, previously shown to mediate PIP(2) (phosphatidylinositol 4,5-bisphosphate) binding [Aharonovitz, Zaun, Balla, York, Orlowski and Grinstein (2000) J. Cell. Biol. 150, 213-224]. The affinity of this interaction (K(d) = 100-200 nM) is reduced in hypertonic and acidic conditions, demonstrating that this interaction is of an electrostatic nature. The binding affinity is also reduced upon binding of Ca(2+)/CaM (Ca(2+)-saturated calmodulin) to the 4.1R FERM domain. We propose that 4.1R regulates NHE1 activity through a direct protein-protein interaction that can be modulated by intracellular pH and Na(+) and Ca(2+) concentrations.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Ratas , Alineación de Secuencia , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética
16.
Anal Sci ; 28(6): 613-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22729049

RESUMEN

In this study, we describe a novel application for light scattering, a method widely used for separation of molecules in solution based on their size. We demonstrate that light scattering analysis can monitor the change in particle size of protein 4.1R prior to and after binding to red blood cell inside-out-vesicles in solution. Light scattering constitutes therefore a novel tool to analyze protein-binding association constants.


Asunto(s)
Proteínas del Citoesqueleto/análisis , Luz , Proteínas de la Membrana/análisis , Dispersión de Radiación , Eritrocitos/química , Tamaño de la Partícula , Soluciones
17.
Blood ; 119(4): 1036-44, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22049517

RESUMEN

Mammalian erythroblasts undergo enucleation, a process thought to be similar to cytokinesis. Although an assemblage of actin, non-muscle myosin II, and several other proteins is crucial for proper cytokinesis, the role of non-muscle myosin II in enucleation remains unclear. In this study, we investigated the effect of various cell-division inhibitors on cytokinesis and enucleation. For this purpose, we used human colony-forming unit-erythroid (CFU-E) and mature erythroblasts generated from purified CD34(+) cells as target cells for cytokinesis and enucleation assay, respectively. Here we show that the inhibition of myosin by blebbistatin, an inhibitor of non-muscle myosin II ATPase, blocks both cell division and enucleation, which suggests that non-muscle myosin II plays an essential role not only in cytokinesis but also in enucleation. When the function of non-muscle myosin heavy chain (NMHC) IIA or IIB was inhibited by an exogenous expression of myosin rod fragment, myosin IIA or IIB, each rod fragment blocked the proliferation of CFU-E but only the rod fragment for IIB inhibited the enucleation of mature erythroblasts. These data indicate that NMHC IIB among the isoforms is involved in the enucleation of human erythroblasts.


Asunto(s)
Eritroblastos/citología , Eritroblastos/metabolismo , Eritropoyesis , Miosina Tipo IIB no Muscular/metabolismo , Amidas/farmacología , Aminoquinolinas/farmacología , Células Cultivadas , Citocinesis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Eritroblastos/efectos de los fármacos , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/efectos de los fármacos , Células Precursoras Eritroides/metabolismo , Eritropoyesis/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Proteínas de Microfilamentos/antagonistas & inhibidores , Miosinas/antagonistas & inhibidores , Miosina Tipo IIA no Muscular/antagonistas & inhibidores , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/antagonistas & inhibidores , Miosina Tipo IIB no Muscular/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Quinasas Asociadas a rho/antagonistas & inhibidores
18.
Int J Cell Biol ; 2011: 943272, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21904552

RESUMEN

Membrane skeletal protein 4.1R is the prototypical member of a family of four highly paralogous proteins that include 4.1G, 4.1N, and 4.1B. Two isoforms of 4.1R (4.1R(135) and 4.1R(80)), as well as 4.1G, are expressed in erythroblasts during terminal differentiation, but only 4.1R(80) is present in mature erythrocytes. One goal in the field is to better understand the complex regulation of cell type and isoform-specific expression of 4.1 proteins. To start answering these questions, we are studying in depth the important functions of 4.1 proteins in the organization and function of the membrane skeleton in erythrocytes. We have previously reported that the binding profiles of 4.1R(80) and 4.1R(135) to membrane proteins and calmodulin are very different despite the similar structure of the membrane-binding domain of 4.1G and 4.1R(135). We have accumulated evidence for those differences being caused by the N-terminal 209 amino acids headpiece region (HP). Interestingly, the HP region is an unstructured domain. Here we present an overview of the differences and similarities between 4.1 isoforms and paralogs. We also discuss the biological significance of unstructured domains.

19.
Biochem J ; 440(3): 367-74, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21848512

RESUMEN

In erythrocytes, 4.1R80 (80 kDa isoform of protein 4.1R) binds to the cytoplasmic tail of the transmembrane proteins band 3 and GPC (glycophorin C), and to the membrane-associated protein p55 through the N- (N-terminal), α- (α-helix-rich) and C- (C-terminal) lobes of R30 [N-terminal 30 kDa FERM (4.1/ezrin/radixin/moesin) domain of protein 4.1R] respectively. We have shown previously that R30 binds to CaM (calmodulin) in a Ca2+-independent manner, the equilibrium dissociation constant (Kd) for R30-CaM binding being very similar (in the submicromolar range) in the presence or absence of Ca2+. In the present study, we investigated the consequences of CaM binding on R30's structural stability using resonant mirror detection and FTIR (Fourier-transform IR) spectroscopy. After a 30 min incubation above 40° C, R30 could no longer bind to band 3 or to GPC. In contrast, R30 binding to p55, which could be detected at a temperature as low as 34° C, was maintained up to 44° C in the presence of apo-CaM. Dynamic light scattering measurements indicated that R30, either alone or complexed with apo-CaM, did not aggregate up to 40° C. FTIR spectroscopy revealed that the dramatic variations in the structure of the ß-sheet structure of R30 observed at various temperatures were minimized in the presence of apo-CaM. On the basis of Kd values calculated at various temperatures, ΔCp and ΔG° for R30 binding to apo-CaM were determined as -10 kJ · K(-1) · mol-1 and ~ -38 kJ · mol(-1) at 37° C (310.15 K) respectively. These data support the notion that apo-CaM stabilizes R30 through interaction with its ß-strand-rich C-lobe and provide a novel function for CaM, i.e. structural stabilization of 4.1R80.


Asunto(s)
Calmodulina/química , Proteínas del Citoesqueleto/química , Proteínas de la Membrana/química , Animales , Apoproteínas/química , Calcio/química , Bovinos , Humanos , Luz , Modelos Moleculares , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Dispersión de Radiación , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
20.
Dev Growth Differ ; 52(7): 591-602, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20887560

RESUMEN

Protein 4.1R (4.1R) has been identified as the major component of the human erythrocyte membrane skeleton. The members of the protein 4.1 gene family are expressed in a tissue-specific alternative splicing manner that increases their functions in each tissue; however, the exact roles of cardiac 4.1R in the developing myocardium are poorly understood. In zebrafish (ZF), we identified two heart-specific 4.1R isoforms, ZF4.1RH2 and ZF4.1RH3, encoding N-terminal 30 kDa (FERM) domain and spectrin-actin binding domain (SABD) and C-terminal domain (CTD), separately. Applying immunohistochemistry using specific antibodies for 30 kDa domain and CTD separately, the gene product of ZF4.1RH2 and ZF4.1RH3 appeared only in the ventricle and in the atrium, respectively, in mature hearts. During embryogenesis, both gene expressions are expressed starting 24 h post-fertilization (hpf). Following whole-mount in situ hybridization, ZF4.1RH3 gene expression was detected in the atrium of 37 hpf embryos. These results indicate that the gene product of ZF4.1RH3 is essential for normal morphological shape of the developing heart and to support the repetitive cycles of its muscle contraction and relaxation.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Miocardio/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Western Blotting , Proteínas del Citoesqueleto/genética , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Inmunohistoquímica , Proteínas de la Membrana/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA