Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 597
1.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830868

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Carcinoma, Non-Small-Cell Lung , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , NF-E2-Related Factor 2 , Protein Stability , Ubiquitination , NF-E2-Related Factor 2/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , Cell Line, Tumor , Disease Progression , Proteolysis , Mice, Nude , Female , NIMA-Interacting Peptidylprolyl Isomerase
2.
Structure ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38703777

Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.

3.
JACS Au ; 4(5): 1911-1927, 2024 May 27.
Article En | MEDLINE | ID: mdl-38818077

Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.

4.
Trends Pharmacol Sci ; 45(6): 503-519, 2024 Jun.
Article En | MEDLINE | ID: mdl-38782689

Small molecules are at the forefront of anticancer therapies. Successive treatments with single molecules incur drug resistance, calling for combination. Here, we explore the tough choices oncologists face - not just which drugs to use but also the best treatment plans, based on factors such as target proteins, pathways, and gene expression. We consider the reality of cancer's disruption of normal cellular processes, highlighting why it's crucial to understand the ins and outs of current treatment methods. The discussion on using combination drug therapies to target multiple pathways sheds light on a promising approach while also acknowledging the hurdles that come with it, such as dealing with pathway crosstalk. We review options and provide examples and the mechanistic basis, altogether providing the first comprehensive guide to combinatorial therapy selection.


Antineoplastic Agents , Neoplasms , Humans , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Animals , Small Molecule Libraries/pharmacology , Drug Resistance, Neoplasm
5.
J Phys Chem B ; 128(21): 5175-5187, 2024 May 30.
Article En | MEDLINE | ID: mdl-38747619

SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.


ErbB Receptors , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , p120 GTPase Activating Protein , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Humans , Phosphorylation , p120 GTPase Activating Protein/metabolism , p120 GTPase Activating Protein/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/metabolism , Protein Binding , Binding Sites
7.
Protein Sci ; 33(5): e4982, 2024 May.
Article En | MEDLINE | ID: mdl-38591710

KSR1, a key scaffold protein for the MAPK pathway, facilitates ERK activation upon growth factor stimulation. We recently demonstrated that KSR1 binds the Ca2+-binding protein calmodulin (CaM), thereby providing an intersection between KSR1-mediated and Ca2+ signaling. In this study, we set out to generate a KSR1 point mutant with reduced Ca2+/CaM binding in order to unravel the functional implications of their interaction. To do so, we solved the structural determinants of complex formation. Using purified fragments of KSR1, we showed that Ca2+/CaM binds to the CA3 domain of KSR1. We then used in silico molecular modeling to predict contact residues for binding. This approach identified two possible modes of interaction: (1) binding of extended Ca2+/CaM to a globular conformation of KSR1-CA3 via electrostatic interactions or (2) binding of collapsed Ca2+/CaM to α-helical KSR1-CA3 via hydrophobic interactions. Experimentally, site-directed mutagenesis of the predicted contact residues for the two binding models favored that where collapsed Ca2+/CaM binds to the α-helical conformation of KSR1-CA3. Importantly, replacing KSR1-Phe355 with Asp reduces Ca2+/CaM binding by 76%. The KSR1-F355D mutation also significantly impairs the ability of EGF to activate ERK, which reveals that Ca2+/CaM binding promotes KSR1-mediated MAPK signaling. This work, by uncovering structural insight into the binding of KSR1 to Ca2+/CaM, identifies a KSR1 single-point mutant as a bioreagent to selectively study the crosstalk between Ca2+ and KSR1-mediated signaling.


Calcium Signaling , Calmodulin , Calmodulin/chemistry , Protein Binding , Mutation , Mutagenesis, Site-Directed , Calcium/metabolism
8.
Cell Rep ; 43(5): 114128, 2024 May 28.
Article En | MEDLINE | ID: mdl-38652661

Shifts in the magnitude and nature of gut microbial metabolites have been implicated in Alzheimer's disease (AD), but the host receptors that sense and respond to these metabolites are largely unknown. Here, we develop a systems biology framework that integrates machine learning and multi-omics to identify molecular relationships of gut microbial metabolites with non-olfactory G-protein-coupled receptors (termed the "GPCRome"). We evaluate 1.09 million metabolite-protein pairs connecting 408 human GPCRs and 335 gut microbial metabolites. Using genetics-derived Mendelian randomization and integrative analyses of human brain transcriptomic and proteomic profiles, we identify orphan GPCRs (i.e., GPR84) as potential drug targets in AD and that triacanthine experimentally activates GPR84. We demonstrate that phenethylamine and agmatine significantly reduce tau hyperphosphorylation (p-tau181 and p-tau205) in AD patient induced pluripotent stem cell-derived neurons. This study demonstrates a systems biology framework to uncover the GPCR targets of human gut microbiota in AD and other complex diseases if broadly applied.


Alzheimer Disease , Gastrointestinal Microbiome , Receptors, G-Protein-Coupled , Alzheimer Disease/metabolism , Alzheimer Disease/microbiology , Humans , Receptors, G-Protein-Coupled/metabolism , Induced Pluripotent Stem Cells/metabolism , tau Proteins/metabolism , Proteomics/methods , Phosphorylation , Brain/metabolism , Neurons/metabolism , Multiomics
9.
J Chem Inf Model ; 64(3): 862-873, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38215280

The Ras homologue family member A (RhoA) is a member of the Rho family, a subgroup of the Ras superfamily. RhoA interacts with the 115 kDa guanine nucleotide exchange factor (p115-RhoGEF), which assists in activation and binding with downstream effectors. Here, we use molecular dynamics (MD) simulations and essential dynamics analysis of the inactive RhoA-GDP and active RhoA-GTP, when bound to p115-RhoGEF to decipher the mechanism of RhoA activation at the structural level. We observe that inactive RhoA-GDP maintains its position near the catalytic site on the Dbl homology (DH) domain of p115-RhoGEF through the interaction of its Switch I region with the DH domain. We further show that the active RhoA-GTP is engaged in more interactions with the p115-RhoGEF membrane-bound Pleckstrin homology (PH) domain as compared to RhoA-GDP. We hypothesize that the role of the interactions between the active RhoA-GTP and the PH domain is to help release it from the DH domain upon activation. Our results support this premise, and our simulations uncover the beginning of this process and provide structural details. They also point to allosteric communication pathways that take part in RhoA activation to promote and strengthen the interaction between the active RhoA-GTP and the PH domain. Allosteric regulation also occurs among other members of the Rho superfamily. Collectively, we suggest that in the activation process, the role of the RhoA-GTP interaction with the PH domain is to release RhoA-GTP from the DH domain after activation, making it available to downstream effectors.


Molecular Dynamics Simulation , Allosteric Regulation , Rho Guanine Nucleotide Exchange Factors , Protein Domains , Guanosine Triphosphate/metabolism
10.
Chem Sci ; 15(3): 1003-1017, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38239681

mTOR serine/threonine kinase is a cornerstone in the PI3K/AKT/mTOR pathway. Yet, the detailed mechanism of activation of its catalytic core is still unresolved, likely due to mTOR complexes' complexity. Its dysregulation was implicated in cancer and neurodevelopmental disorders. Using extensive molecular dynamics (MD) simulations and compiled published experimental data, we determine exactly how mTOR's inherent motifs can control the conformational changes in the kinase domain, thus kinase activity. We also chronicle the critical regulation by the unstructured negative regulator domain (NRD). When positioned inside the catalytic cleft (NRD IN state), mTOR tends to adopt a deep and closed catalytic cleft. This is primarily due to the direct interaction with the FKBP-rapamycin binding (FRB) domain which restricts it, preventing substrate access. Conversely, when outside the catalytic cleft (NRD OUT state), mTOR favors an open conformation, exposing the substrate-binding site on the FRB domain. We further show how an oncogenic mutation (L2427R) promotes shifting the mTOR ensemble toward the catalysis-favored state. Collectively, we extend mTOR's "active-site restriction" mechanism and clarify mutation action. In particular, our mechanism suggests that RMC-5552 (RMC-6272) bitopic inhibitors may benefit from adjustment of the (PEG8) linker length when targeting certain mTOR variants. In the cryo-EM mTOR/RMC-5552 structure, the distance between the allosteric and orthosteric inhibitors is ∼22.7 Å. With a closed catalytic cleft, this linker bridges the sites. However, in our activation mechanism, in the open cleft it expands to ∼24.7 Å, offering what we believe to be the first direct example of how discovering an activation mechanism can potentially increase the affinity of inhibitors targeting mutants.

11.
Annu Rev Pharmacol Toxicol ; 64: 231-253, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-37524384

Here we discuss approaches to K-Ras inhibition and drug resistance scenarios. A breakthrough offered a covalent drug against K-RasG12C. Subsequent innovations harnessed same-allele drug combinations, as well as cotargeting K-RasG12C with a companion drug to upstream regulators or downstream kinases. However, primary, adaptive, and acquired resistance inevitably emerge. The preexisting mutation load can explain how even exceedingly rare mutations with unobservable effects can promote drug resistance, seeding growth of insensitive cell clones, and proliferation. Statistics confirm the expectation that most resistance-related mutations are in cis, pointing to the high probability of cooperative, same-allele effects. In addition to targeted Ras inhibitors and drug combinations, bifunctional molecules and innovative tri-complex inhibitors to target Ras mutants are also under development. Since the identities and potential contributions of preexisting and evolving mutations are unknown, selecting a pharmacologic combination is taxing. Collectively, our broad review outlines considerations and provides new insights into pharmacology and resistance.


Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Paclitaxel , Alleles , Drug Combinations
12.
Biophys J ; 123(1): 57-67, 2024 01 02.
Article En | MEDLINE | ID: mdl-37978802

Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.


Guanine Nucleotide Dissociation Inhibitors , rho Guanine Nucleotide Dissociation Inhibitor alpha , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Phosphorylation , Guanine Nucleotide Dissociation Inhibitors/chemistry , Guanine Nucleotide Dissociation Inhibitors/metabolism , rho Guanine Nucleotide Dissociation Inhibitor alpha/metabolism , Protein Binding , rhoA GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
13.
Cell Mol Life Sci ; 81(1): 5, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38085330

SHP2 phosphatase promotes full activation of the RTK-dependent Ras/MAPK pathway. Its mutations can drive cancer and RASopathies, a group of neurodevelopmental disorders (NDDs). Here we ask how same residue mutations in SHP2 can lead to both cancer and NDD phenotypes, and whether we can predict what the outcome will be. We collected and analyzed mutation data from the literature and cancer databases and performed molecular dynamics simulations of SHP2 mutants. We show that both cancer and Noonan syndrome (NS, a RASopathy) mutations favor catalysis-prone conformations. As to cancer versus RASopathies, we demonstrate that cancer mutations are more likely to accelerate SHP2 activation than the NS mutations at the same genomic loci, in line with NMR data for K-Ras4B more aggressive mutations. The compiled experimental data and dynamic features of SHP2 mutants lead us to propose that different from strong oncogenic mutations, SHP2 activation by NS mutations is less likely to induce a transition of the ensemble from the SHP2 inactive state to the active state. Strong signaling promotes cell proliferation, a hallmark of cancer. Weak, or moderate signals are associated with differentiation. In embryonic neural cells, dysregulated differentiation is connected to NDDs. Our innovative work offers structural guidelines for identifying and correlating mutations with clinical outcomes, and an explanation for why bearers of RASopathy mutations may have a higher probability of cancer. Finally, we propose a drug strategy against SHP2 variants-promoting cancer and RASopathies.


Neoplasms , Noonan Syndrome , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Noonan Syndrome/genetics , Mutation/genetics , Neoplasms/genetics , src Homology Domains/genetics , Phenotype
14.
RSC Chem Biol ; 4(11): 850-864, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37920394

The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.

15.
Adv Sci (Weinh) ; 10(36): e2303367, 2023 Dec.
Article En | MEDLINE | ID: mdl-37946677

Blood flow produces shear stress exerted on the endothelial layer of the vessels. Spatial characterization of the endothelial proteome is required to uncover the mechanisms of endothelial activation by shear stress, as blood flow varies in the vasculature. An integrative ubiquitinome and proteome analysis of shear-stressed endothelial cells demonstrated that the non-degradative ubiquitination of several GTPases is regulated by mechano-signaling. Spatial analysis reveals increased ubiquitination of the small GTPase RAP1 in the descending aorta, a region exposed to laminar shear stress. The ubiquitin ligase WWP2 is identified as a novel regulator of RAP1 ubiquitination during shear stress response. Non-degradative ubiquitination fine-tunes the function of GTPases by modifying their interacting network. Specifically, WWP2-mediated RAP1 ubiquitination at lysine 31 switches the balance from the RAP1/ Talin 1 (TLN1) toward RAP1/ Afadin (AFDN) or RAP1/ RAS Interacting Protein 1 (RASIP1) complex formation, which is essential to suppress shear stress-induced reactive oxygen species (ROS) production and maintain endothelial barrier integrity. Increased ROS production in endothelial cells in the descending aorta of endothelial-specific Wwp2-knockout mice leads to increased levels of oxidized lipids and inflammation. These results highlight the importance of the spatially regulated non-degradative ubiquitination of GTPases in endothelial mechano-activation.


Endothelial Cells , GTP Phosphohydrolases , Animals , Mice , Endothelial Cells/metabolism , GTP Phosphohydrolases/metabolism , Reactive Oxygen Species/metabolism , Proteome/metabolism , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism , Mice, Knockout , Ubiquitination
16.
NPJ Genom Med ; 8(1): 37, 2023 Nov 04.
Article En | MEDLINE | ID: mdl-37925498

Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.

17.
J Mol Biol ; 435(24): 168354, 2023 12 15.
Article En | MEDLINE | ID: mdl-37935253

Mutations causing loss of PTEN lipid phosphatase activity can promote cancer, benign tumors (PHTS), and neurodevelopmental disorders (NDDs). Exactly how they preferentially trigger distinct phenotypic outcomes has been puzzling. Here, we demonstrate that PTEN mutations differentially allosterically bias P loop dynamics and its connection to the catalytic site, affecting catalytic activity. NDD-related mutations are likely to sample conformations of the functional wild-type state, while sampled conformations for the strong, cancer-related driver mutation hotspots favor catalysis-primed conformations, suggesting that NDD mutations are likely to be weaker, and our large-scale simulations show why. Prenatal PTEN isoform expression data suggest exons 5 and 7, which harbor NDD mutations, as cancer-risk carriers. Since cancer requires more than a single mutation, our conformational and genomic analysis helps discover how same protein mutations can foster different clinical manifestations, articulates a role for co-occurring background latent driver mutations, and uncovers relationships of splicing isoform expression to life expectancy.


Autistic Disorder , Brain , Neoplasms , PTEN Phosphohydrolase , Humans , Autistic Disorder/genetics , Brain/enzymology , Mutation , Neoplasms/genetics , Protein Isoforms/genetics , PTEN Phosphohydrolase/genetics
18.
bioRxiv ; 2023 Aug 17.
Article En | MEDLINE | ID: mdl-37790340

Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the short G1/S phase transition. We consider the experimentally established high-level bursting of cyclin-E, and sustained duration of elevated cyclin-D expression in the cell, available experimental cellular and structural data, and comprehensive explicit solvent molecular dynamics simulations to provide the mechanistic foundation of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. Importantly, we determine the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses the compelling cell cycle regulation question and illuminates the distinct activation speeds in the G1 versus G1/S phases, which are crucial for cell function.

19.
Curr Opin Struct Biol ; 83: 102722, 2023 Dec.
Article En | MEDLINE | ID: mdl-37871498

Proteins exist as dynamic conformational ensembles. Here we suggest that the propensities of the conformations can be predictors of cell function. The conformational states that the molecules preferentially visit can be viewed as phenotypic determinants, and their mutations work by altering the relative propensities, thus the cell phenotype. Our examples include (i) inactive state variants harboring cancer driver mutations that present active state-like conformational features, as in K-Ras4BG12V compared to other K-Ras4BG12X mutations; (ii) mutants of the same protein presenting vastly different phenotypic and clinical profiles: cancer and neurodevelopmental disorders; (iii) alterations in the occupancies of the conformational (sub)states influencing enzyme reactivity. Thus, protein conformational propensities can determine cell fate. They can also suggest the allosteric drugs efficiency.


Neoplasms , Proteins , Humans , Protein Conformation , Phenotype
20.
Commun Biol ; 6(1): 712, 2023 07 11.
Article En | MEDLINE | ID: mdl-37433832

Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole. Mutants defective in Cep63•Cep152 heterotetramer formation displayed crippled pericentriolar Cep152 organization, polo-like kinase 4 (Plk4) relocalization to the procentriole assembly site, and Plk4-mediated centriole duplication. Given that the organization of pericentriolar materials (PCM) is evolutionarily conserved, this work could serve as a model for investigating the structure and function of PCM in other species, while offering a new direction in probing the organizational defects of PCM-related human diseases.


Centrioles , Centrosome , Protein Serine-Threonine Kinases , Humans , Cell Cycle , Molecular Weight , Protein Domains , Protein Serine-Threonine Kinases/metabolism
...