Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cryobiology ; 116: 104907, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38768801

RESUMEN

When cells are cryopreserved, they go through a freezing process with several distinct phases (i.e., cooling until nucleation, ice nucleation, ice crystal growth and cooling to a final temperature). Conventional cell freezing approaches often employ a single cooling rate to describe and optimize the entire freezing process, which neglects its complexity and does not provide insight into the effects of the different freezing phases. The aim of this work was to elucidate the impact of each freezing phase by varying different process parameters per phase. Hereto, spin freezing was used to freeze Jurkat T cells in either a Me2SO-based or Me2SO-free formulation. The cooling rates before ice nucleation and after total ice crystallization impacted cell viability, resulting in viability ranging from 26.7% to 52.8% for the Me2SO-free formulation, and 22.5%-42.6% for the Me2SO-based formulation. Interestingly, the degree of supercooling upon nucleation did not exhibit a significant effect on cell viability in this work. However, the rate of ice crystal formation emerged as a crucial factor, with viability ranging from 2.4% to 53.2% for the Me2SO-free formulation, and 0.3%-53.2% for the Me2SO-based formulation, depending on the freezing rate. A morphological study of the cells post-cryopreservation was performed using confocal microscopy, and it was found that cytoskeleton integrity and cell volume were impacted, depending on the formulation-process parameter combination. These findings underscore the importance of scrutinizing all cooling and freezing phases, as each phase impacted post-thaw viability in a distinct way, depending of the specific formulation used.

2.
Int J Pharm ; 641: 123062, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37209792

RESUMEN

Continuous spin freeze-drying provides a range of opportunities regarding the implementation of several in-line process analytical technologies (PAT) to control and optimize the freeze-drying process at the individual vial level. In this work, two methods were developed to (1) control the freezing phase by separately controlling the cooling and freezing rate and (2) control the drying phase by controlling the vial temperature (and hence the product temperature) to setpoint values and monitoring the residual moisture content. During the freezing phase, the vial temperature closely followed the decreasing setpoint temperature during the cooling phases, and the crystallization phase was reproducibly controlled by regulating the freezing rate. During both primary and secondary drying, vial temperature could be maintained on the setpoint temperature which resulted in an elegant cake structure after every run. By being able to accurately control the freezing rate and the vial temperature, a homogeneous drying time (SD = 0.07-0.09 h) between replicates was obtained. Applying a higher freezing rate significantly increased primary drying time. On the other hand, fast freezing rates increased the desorption rate. Finally, the residual moisture of the freeze-dried formulation could be monitored in-line with a high accuracy providing insight on the required length of the secondary drying phase.


Asunto(s)
Desecación , Tecnología Farmacéutica , Liofilización/métodos , Temperatura , Congelación
3.
J Control Release ; 357: 149-160, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958400

RESUMEN

Messenger RNA (mRNA) lipid nanoparticles (LNPs) have emerged at the forefront during the COVID-19 vaccination campaign. Despite their tremendous success, mRNA vaccines currently require storage at deep freeze temperatures which complicates their storage and distribution, and ultimately leads to lower accessibility to low- and middle-income countries. To elaborate on this challenge, we investigated freeze-drying as a method to enable storage of mRNA LNPs at room- and even higher temperatures. More specifically, we explored a novel continuous freeze-drying technique based on spin-freezing, which has several advantages compared to classical batch freeze-drying including a much shorter drying time and improved process and product quality controlling. Here, we give insight into the variables that play a role during freeze-drying by evaluating the impact of the buffer and mRNA LNP formulation (ionizable lipid to mRNA weight ratio) on properties such as size, morphology and mRNA encapsulation. We found that a sufficiently high ionizable lipid to mRNA weight ratio was necessary to prevent leakage of mRNA during freeze-drying and that phosphate and Tris, but not PBS, were appropriate buffers for lyophilization of mRNA LNPs. We also studied the stability of optimally lyophilized mRNA LNPs at 4 °C, 22 °C, and 37 °C and found that transfection properties of lyophilized mRNA LNPs were maintained during at least 12 weeks. To our knowledge, this is the first study that demonstrates that optimally lyophilized mRNA LNPs can be safely stored at higher temperatures for months without losing their transfection properties.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Temperatura , ARN Mensajero , Vacunas contra la COVID-19 , Liofilización/métodos , Lípidos
4.
Pharmaceutics ; 13(12)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34959357

RESUMEN

During the spin freezing step of a recently developed continuous spin freeze-drying technology, glass vials are rapidly spun along their longitudinal axis. The aqueous drug formulation subsequently spreads over the inner vial wall, while a cold gas flow is used for cooling and freezing the product. In this work, a mechanistic model was developed describing the energy transfer during each phase of spin freezing in order to predict the vial and product temperature change over time. The uncertainty in the model input parameters was included via uncertainty analysis, while global sensitivity analysis was used to assign the uncertainty in the model output to the different sources of uncertainty in the model input. The model was verified, and the prediction interval corresponded to the vial temperature profiles obtained from experimental data, within the limits of the uncertainty interval. The uncertainty in the model prediction was mainly explained (>96% of uncertainty) by the uncertainty in the heat transfer coefficient, the gas temperature measurement, and the equilibrium temperature. The developed model was also applied in order to set and control a desired vial temperature profile during spin freezing. Applying this model in-line to a continuous freeze-drying process may alleviate some of the disadvantages related to batch freeze-drying, where control over the freezing step is generally poor.

5.
Pharmaceutics ; 13(12)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34959407

RESUMEN

Spin freeze-drying, as a part of a continuous freeze-drying technology, is associated with a much higher drying rate and a higher level of process control in comparison with batch freeze-drying. However, the impact of the spin freezing rate on the dried product layer characteristics is not well understood at present. This research focuses on the relation between spin-freezing and pore size, pore shape, dried product mass transfer resistance and solid state of the dried product layer. This was thoroughly investigated via high-resolution X-ray micro-computed tomography (µCT), scanning electron microscopy (SEM), thermal imaging and solid state X-ray diffraction (XRD). It was concluded that slow spin-freezing rates resulted in the formation of highly tortuous structures with a high dried-product mass-transfer resistance, while fast spin-freezing rates resulted in lamellar structures with a low tortuosity and low dried-product mass-transfer resistance.

6.
Pharmaceutics ; 13(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34959449

RESUMEN

The pharmaceutical industry is progressing toward the development of more continuous manufacturing techniques. At the same time, the industry is striving toward more process understanding and improved process control, which requires the implementation of process analytical technology tools (PAT). For the purpose of drying biopharmaceuticals, a continuous spin freeze-drying technology for unit doses was developed, which is based on creating thin layers of product by spinning the solution during the freezing step. Drying is performed under vacuum using infrared heaters to provide energy for the sublimation process. This approach reduces drying times by more than 90% compared to conventional batch freeze-drying. In this work, a new methodology is presented using near-infrared (NIR) spectroscopy to study the desorption kinetics during the secondary drying step of the continuous spin freeze-drying process. An inline PLS-based NIR calibration model to predict the residual moisture content of a standard formulation (i.e., 10% sucrose) was constructed and validated. This model was then used to evaluate the effect of different process parameters on the desorption rate. Product temperature, which was controlled by a PID feedback mechanism of the IR heaters, had the highest positive impact on the drying rate during secondary drying. Using a higher cooling rate during spin freezing was found to significantly increase the desorption rate as well. A higher filling volume had a smaller negative effect on the drying rate while the chamber pressure during drying was found to have no significant effect in the range between 10 and 30 Pa.

7.
Eur J Pharm Biopharm ; 157: 191-199, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33022391

RESUMEN

RNA interference (RNAi) enables highly specific silencing of potential target genes for treatment of pulmonary pathologies. The intracellular RNAi pathway can be activated by cytosolic delivery of small interfering RNA (siRNA), inducing sequence-specific gene knockdown on the post-transcriptional level. Although siRNA drugs hold many advantages over currently applied therapies, their clinical translation is hampered by inefficient delivery across cellular membranes. We previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel core (nanogel) coated with Curosurf®, a clinically used pulmonary surfactant (PS). The latter enhances both particle stability as well as intracellular siRNA delivery, which was shown to be governed by the PS-associated surfactant protein B (SP-B). Despite having a proven in vitro and in vivo siRNA delivery potential when prepared ex novo, clinical translation of this liquid nanoparticle suspension requires the identification of a long-term preservation strategy that maintains nanoparticle stability and potency. In addition, to achieve optimal pulmonary deposition of the nanocomposite, its compatibility with state-of-the-art pulmonary administration techniques should be evaluated. Here, we demonstrate that PS-coated nanogels can be lyophilized, reconstituted and subsequently nebulized via a vibrating mesh nebulizer. The particles retain their physicochemical integrity and their ability to deliver siRNA in a human lung epithelial cell line. The latter result suggests that the functional integrity of SP-B in the PS coat towards siRNA delivery might be preserved as well. Of note, successful lyophilization was achieved without the need for stabilizing lyo- or cryoprotectants. Our results demonstrate that PS-coated siRNA-loaded nanogels can be lyophilized, which offers the prospect of long-term storage. In addition, the formulation was demonstrated to be suitable for local administration with a state-of-the-art nebulizer for human use upon reconstitution. Hence, the data presented in this study represent an important step towards clinical application of such nanocomposites for treatment of pulmonary disease.


Asunto(s)
Productos Biológicos/administración & dosificación , Técnicas de Transferencia de Gen , Nanogeles , Fosfolípidos/administración & dosificación , Surfactantes Pulmonares/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Tratamiento con ARN de Interferencia , Administración por Inhalación , Aerosoles , Productos Biológicos/química , Productos Biológicos/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Liofilización , Humanos , Pulmón/metabolismo , Nanomedicina , Nebulizadores y Vaporizadores , Fosfolípidos/química , Fosfolípidos/metabolismo , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...