Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(32): 44463-44488, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38943001

RESUMEN

Indoor air quality (IAQ) in the built environment is significantly influenced by particulate matter, volatile organic compounds, and air temperature. Recently, the Internet of Things (IoT) has been integrated to improve IAQ and safeguard human health, comfort, and productivity. This review seeks to highlight the potential of IoT integration for monitoring IAQ. Additionally, the paper details progress by researchers in developing IoT/mobile applications for IAQ monitoring, and their transformative impact in smart building, healthcare, predictive maintenance, and real-time data analysis systems. It also outlines the persistent challenges (e.g., data privacy, security, and user acceptability), hampering effective IoT implementation for IAQ monitoring. Lastly, the global developments and research landscape on IoT for IAQ monitoring were examined through bibliometric analysis (BA) of 106 publications indexed in Web of Science from 2015 to 2022. BA revealed the most significant contributing countries are India and Portugal, while the top productive institutions and researchers are Instituto Politecnico da Guarda (10.37% of TP) and Marques Goncalo (15.09% of TP), respectively. Keyword analysis revealed four major research themes: IoT, pollution, monitoring, and health. Overall, this paper provides significant insights for identifying prospective collaborators, benchmark publications, strategic funding, and institutions for future IoT-IAQ researchers.


Asunto(s)
Contaminación del Aire Interior , Bibliometría , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Internet de las Cosas , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis
2.
Environ Sci Pollut Res Int ; 31(30): 42640-42671, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38902444

RESUMEN

The current work investigated emerging fields for generating and consuming hydrogen and synthetic Fischer-Tropsch (FT) fuels, especially from detrimental greenhouse gases, CO2 and CH4. Technologies for syngas generation ranging from partial oxidation, auto-thermal, dry, photothermal and wet or steam reforming of methane were adequately reviewed alongside biomass valorisation for hydrogen generation, water electrolysis and climate challenges due to methane flaring, production, storage, transportation, challenges and opportunities in CO2 and CH4 utilisation. Under the same conditions, dry reforming produces more coke than steam reforming. However, combining the two techniques produces syngas with a high H2/CO ratio, which is suitable for producing long-chain hydrocarbons. Although the steam methane reforming (SMR) process has been industrialised, it is well known to consume significant energy. However, coke production via catalytic methane decomposition, the prime hindrance to large-scale implementation of these techniques for hydrogen production, could be addressed by coupling CO with CO2 conversion to alter the H2/CO ratio of syngas, increasing the reaction temperatures in dry reforming, or increasing the steam content fed in steam reforming. Optimised hydrogen production and generation of green fuels from CO2 and CH4 can be achieved by implementing these strategies.


Asunto(s)
Dióxido de Carbono , Hidrógeno , Metano , Biocombustibles
3.
Food Chem ; 454: 139797, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797099

RESUMEN

This study investigated antioxidant and anti-inflammatory peptides from Edible Bird's Nest (EBN). The prepared EBN peptides were sequentially separated, purified, and successively identified by ultrafiltration, gel filtration and mass spectrometry techniques. Four potential antioxidant and anti-inflammatory peptides were identified as Peptide 1 (LFWSPSVYLK), Peptide 2 (GWPHLEDNYLDW), Peptide 3 (NPPADLHK) and Peptide 4 (GDLAYLDQGHR). Molecular docking analysis revealed that Peptide 1 and Peptide 2 can competitively interrupt the formation of Keap1-Nrf2 due to the presence of hydrophobic and antioxidant amino acids in their peptide sequences. Peptide 3 and Peptide 4 have a strong effect on interacting with the binding site of IKK-ß due to the interaction of anti-inflammatory amino acids and C-terminal arginine/lysine. The four peptides were synthesised and validated for their antioxidant and anti-inflammatory activities. The results suggest that the four peptides may serve as promising bioactive peptides for preventing oxidative stress and inflammation-related diseases.


Asunto(s)
Antiinflamatorios , Antioxidantes , Aves , Simulación del Acoplamiento Molecular , Péptidos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Secuencia de Aminoácidos , Humanos , Proteínas Aviares/química , Proteínas Aviares/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos
4.
Environ Res ; 252(Pt 2): 118928, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636646

RESUMEN

Microplastics (MPs), as emerging indoor contaminants, have garnered attention due to their ubiquity and unresolved implications for human health. These tiny particles have permeated indoor air and water, leading to inevitable human exposure. Preliminary evidence suggests MP exposure could be linked to respiratory, gastrointestinal, and potentially other health issues, yet the full scope of their effects remains unclear. To map the overall landscape of this research field, a bibliometric analysis based on research articles retrieved from the Web of Science database was conducted. The study synthesizes the current state of knowledge and spotlights the innovative mitigation strategies proposed to curb indoor MP pollution. These strategies involve minimizing the MP emission from source, advancements in filtration technology, aimed at reducing the MP exposure. Furthermore, this research sheds light on cutting-edge methods for converting MP waste into value-added products. These innovative approaches not only promise to alleviate environmental burdens but also contribute to a more sustainable and circular economy by transforming waste into resources such as biofuels, construction materials, and batteries. Despite these strides, this study acknowledges the ongoing challenges, including the need for more efficient removal technologies and a deeper understanding of MPs' health impacts. Looking forward, the study underscores the necessity for further research to fill these knowledge gaps, particularly in the areas of long-term health outcomes and the development of standardized, reliable methodologies for MP detection and quantification in indoor settings. This comprehensive approach paves the way for future exploration and the development of robust solutions to the complex issue of microplastic pollution.


Asunto(s)
Contaminación del Aire Interior , Bibliometría , Microplásticos , Microplásticos/análisis , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Humanos , Monitoreo del Ambiente/métodos
5.
J Environ Manage ; 356: 120644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522274

RESUMEN

Plastics are a wide range of synthetic or semi-synthetic materials, mainly consisting of polymers. The use of plastics has increased to over 300 million metric tonnes in recent years, and by 2050, it is expected to grow to 800 million. Presently, a mere 10% of plastic waste is recycled, with approximately 75% ended up in landfills. Inappropriate disposal of plastic waste into the environment poses a threat to human lives and marine species. Therefore, this review article highlights potential routes for converting plastic/microplastic waste into valuable resources to promote a greener and more sustainable environment. The literature review revealed that plastics/microplastics (P/MP) could be recycled or upcycled into various products or materials via several innovative processes. For example, P/MP are recycled and utilized as anodes in lithium-ion (Li-ion) and sodium-ion (Na-ion) batteries. The anode in Na-ion batteries comprising PP carbon powder exhibits a high reversible capacity of ∼340 mAh/g at 0.01 A/g current state. In contrast, integrating Fe3O4 and PE into a Li-ion battery yielded an excellent capacity of 1123 mAh/g at 0.5 A/g current state. Additionally, recycled Nylon displayed high physical and mechanical properties necessary for excellent application as 3D printing material. Induction heating is considered a revolutionary pyrolysis technique with improved yield, efficiency, and lower energy utilization. Overall, P/MPs are highlighted as abundant resources for the sustainable production of valuable products and materials such as batteries, nanomaterials, graphene, and membranes for future applications.


Asunto(s)
Microplásticos , Plásticos , Humanos , Reciclaje , Instalaciones de Eliminación de Residuos
6.
Environ Sci Pollut Res Int ; 31(1): 109-126, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040882

RESUMEN

This paper presents the landscape of research on airborne microplastics and nanoplastics (MPs/NPs) according to the bibliometric analysis of 147 documents issued between 2015 and 2021, extracted from the Web of Science database. The publications on airborne MPs/NPs have increased rapidly from 2015 onwards, which is largely due to the existence of funding support. Science of the Total Environment is one of the prominent journals in publishing related papers. China, England, the USA, and European Countries have produced a significant output of airborne MP/NP research works, which is associated with the availability of funding agencies regionally or nationally. The research hotspot on the topic ranges from the transport of airborne MPs/NPs to their deposition in the terrestrial or aquatic environments, along with the contamination of samples by indoor MPs/NPs. Most of the publications are either research or review papers related to MPs/NPs. It is crucial to share the understanding of global plastic pollution and its unfavorable effects on humankind by promoting awareness of the existence and impact of MPs/NPs. Funding agencies are vital in boosting the research development of airborne MPs/NPs. Some countries that are lacking funding support were able to publish research findings related to the field of interest, however, with lesser research output. Without sufficient fundings, some impactful publications may not be able to carry a substantial impact in sharing the findings and discoveries with the mass public.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Bibliometría , China , Bases de Datos Factuales
7.
Environ Res ; 245: 118055, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154562

RESUMEN

Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 µm), and comprehensive human exposure risk assessments.


Asunto(s)
Contaminación del Aire Interior , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire Interior/análisis , Contaminación Ambiental/análisis , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Pollut Res Int ; 30(58): 121253-121268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979109

RESUMEN

Understanding particle dispersion characteristics in indoor environments is crucial for revising infection prevention guidelines through optimized engineering control. The secondary wake flow induced by human movements can disrupt the local airflow field, which enhances particle dispersion within indoor spaces. Over the years, researchers have explored the impact of human movement on indoor air quality (IAQ) and identified noteworthy findings. However, there is a lack of a comprehensive review that systematically synthesizes and summarizes the research in this field. This paper aims to fill that gap by providing an overview of the topic and shedding light on emerging areas. Through a systematic review of relevant articles from the Web of Science database, the study findings reveal an emerging trend and current research gaps on the topic titled Impact of Human Movement in Indoor Airflow (HMIA). As an overview, this paper explores the effect of human movement on human microenvironments and particle resuspension in indoor environments. It delves into the currently available methods for assessing the HMIA and proposes the integration of IoT sensors for potential indoor airflow monitoring. The present study also emphasizes incorporating human movement into ventilation studies to achieve more realistic predictions and yield more practical measures. This review advances knowledge and holds significant implications for scientific and public communities. It identifies future research directions and facilitates the development of effective ventilation strategies to enhance indoor environments and safeguard public health.


Asunto(s)
Contaminación del Aire Interior , Humanos , Contaminación del Aire Interior/prevención & control , Ventilación , Respiración
9.
Environ Sci Pollut Res Int ; 30(39): 90522-90546, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37479929

RESUMEN

The recovery and utilisation of waste heat from flue/exhaust gases (RU/WHFG) could potentially provide sustainable energy while curbing pollutant emissions. Over time, the RU/WHFG research landscape has gained significant traction and yielded innovative technologies, sustainable strategies, and publications. However, critical studies highlighting current advancements, publication trends, research hotspots, major stakeholders, and future research directions on RU/WHFG research remain lacking. Therefore, this paper presents a comprehensive bibliometric analysis and literature review of the RU/WHFG research landscape based on publications indexed in Scopus. Results showed that 123 publications and 2191 citations were recovered between 2010 and 2022. Publication trends revealed that the growing interest in RU/WHFG is mainly due to environmental concerns (e.g. pollution, global warming, and climate change), research collaborations, and funding availability. Stakeholder analysis revealed that numerous researchers, affiliations, and countries have actively contributed to the growth and development of RU/WHFG. Lin Fu and Tsinghua University (China) are the most prolific researchers and affiliations, whereas the National Natural Science Foundation of China (NSFC) and China are the most prolific funder and country, respectively. Funding availability from influential schemes such as NSFC has accounted for China's dominance. Keyword co-occurrence identified three major research hotspots, namely, thermal energy utilisation and management (cluster 1), integrated energy and resource recovery (cluster 2), and system analysis and optimisation (cluster 3). Literature review revealed that researchers are currently focused on maximising thermodynamic/energy efficiency, fuel minimisation, and emission reduction. Despite progress, research gaps remain in low-temperature/low-grade waste heat recovery, utilisation, storage, life cycle, and environmental impact analysis.


Asunto(s)
Altruismo , Calor , Humanos , Temperatura , Bibliometría , Gases
10.
Environ Sci Pollut Res Int ; 29(54): 82492-82511, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35751730

RESUMEN

The present study examines the effect of medical staff's turning movements on particle concentration in the surgical zone and settlement on the patient under single large diffuser (SLD) ventilation. A computational domain representing the operating room (OR) was constructed using computer-aided design (CAD) software. The airflow and particle models were validated against the published data before conducting the case studies. The airflow in the OR was simulated using an RNG k-ε turbulence model, while the dispersion of the particles was simulated using a discrete phase model based on the Lagrangian approach. A user-defined function (UDF) code was written and compiled in the simulation software to describe the medical staff member's turning movements. In this study, three cases were examined: baseline, SLD 1, and SLD 2, with the air supply areas of 4.3 m2, 5.7 m2, and 15.9 m2, respectively. Results show that SLD ventilations in an OR can reduce the number of dispersed particles in the surgical zone. The particles that settled on the patient were reduced by 41% and 39% when using the SLD 1 and SLD 2 ventilations, respectively. The use of the larger air supply area of SLD 2 ventilation in the present study does not significantly reduce the particles that settle on a patient. Likewise, the use of SLD 2 ventilation may increase operating and maintenance costs.


Asunto(s)
Contaminación del Aire Interior , Ventilación , Humanos , Ventilación/métodos , Quirófanos , Simulación por Computador , Cuerpo Médico , Contaminación del Aire Interior/análisis , Movimientos del Aire , Microbiología del Aire
11.
Environ Sci Pollut Res Int ; 29(5): 6710-6721, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34458973

RESUMEN

In this study, a systematic procedure for establishing the relationship between particulate matter (PM) and microbial counts in four operating rooms (ORs) was developed. The ORs are located in a private hospital on the western coast of Peninsular Malaysia. The objective of developing the systematic procedure is to ensure that the correlation between the PMs and microbial counts are valid. Each of the procedures is conducted based on the ISO, IEST, and NEBB standards. The procedures involved verifying the operating parameters are air change rate, room differential pressure, relative humidity, and air temperature. Upon verifying that the OR parameters are in the recommended operating range, the measurements of the PMs and sampling of the microbes were conducted. The TSI 9510-02 particle counter was used to measure three different sizes of PMs: PM 0.5, PM 5, and PM 10. The MAS-100ECO air sampler was used to quantify the microbial counts. The present study confirms that PM 0.5 does not have an apparent positive correlation with the microbial count. However, the evident correlation of 7% and 15% were identified for both PM 5 and PM 10, respectively. Therefore, it is suggested that frequent monitoring of both PM 5 and PM 10 should be practised in an OR before each surgical procedure. This correlation approach could provide an instantaneous estimation of the microbial counts present in the OR.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Microbiología del Aire , Monitoreo del Ambiente , Hospitales , Quirófanos , Tamaño de la Partícula , Material Particulado/análisis , Temperatura
12.
Environ Sci Pollut Res Int ; 28(11): 13842-13860, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33196996

RESUMEN

The anthropogenic emission of carbon dioxide (CO2) into the atmosphere is recognized as the main contributor to global climate change. To date, scientists have developed various strategies, including CO2 utilization technologies, to reduce global carbon emissions. This paper presents the global scientific landscape of the CO2 utilization research from 1995 to 2019 based on a bibliometric analysis of 1875 publications extracted from Web of Science. The findings indicate a major increase in the number of publications and citations received from 2015 to 2019, denoting a fast-emerging research trend. The dynamics of global CO2 utilization research is partly driven by China's policies and research funding to promote low-carbon economic development. Applied Energy is recognized as a core journal in this research topic. The utilization of CO2 is a multidisciplinary topic that has progressed by multidimensional collaborations at the country and organizations levels, while the formation of co-authorship networks at the individual level is mostly influenced by the authors' affiliations. Keyword co-occurrence analysis reveals a rapid evolution in the CO2 utilization strategies from chemical fixation in carbonates and epoxides to pilot-scale testing of power-to-gas technologies in Europe and the USA. The development of efficient power-to-fuel technologies and biological utilization routes (using microalgae and bacteria) will probably be the next research priorities in CO2 utilization research.


Asunto(s)
Atmósfera , Dióxido de Carbono , Bibliometría , Dióxido de Carbono/análisis , Cambio Climático , Europa (Continente)
13.
Mar Pollut Bull ; 158: 111432, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32753215

RESUMEN

This paper presents the research landscape on microplastics and nanoplastics (M/NPs) in global food webs based on a bibliometric analysis of 330 publications published in 2009-2019 extracted from Web of Science. The publications increased tremendously since 2013. Marine Pollution Bulletin is one of the top productive journals for this topic. The publication landscape related to M/NPs in global food webs, as interdisciplinary research, is highly dependent on the funding availability. The high productivities of England, China, USA and European countries are attributed to the funding from the agencies at regional or national levels. Keyword analysis reveals the shift of research hotspots from investigations on M/NPs absorbed by various organisms in the ecosystems to studies on the trophic transfer of M/NPs and sorbed contaminants in the food webs and their associated adverse impacts. Funding agencies play important roles in leading the future development of this topic.


Asunto(s)
Cadena Alimentaria , Plásticos , Bibliometría , China , Ecosistema , Inglaterra , Europa (Continente) , Microplásticos
14.
Environ Sci Pollut Res Int ; 27(8): 7757-7784, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32020458

RESUMEN

The rapidly increasing generation of municipal solid waste (MSW) threatens the environmental integrity and well-being of humans at a global level. Incineration is regarded as a technically sound technology for the management of MSW. However, the effective management of the municipal solid waste incineration (MSWI) ashes remains a challenge. This article presents the global dynamics of MSWI ashes research from 1994 to 2018 based on a bibliometric analysis of 1810 publications (research articles and conference proceedings) extracted from the Web of Science database, followed by a comprehensive summary on the research developments in the field. The results indicate the rapid growth of annual publications on MSWI ashes research, with China observed as the most productive country within the study period. Waste Management, Journal of Hazardous Materials, Chemosphere and Waste Management & Research, which accounted for 35.42% of documents on MSWI research, are the most prominent journals in the field. The most critical thematic areas on this topic are MSWI ashes characterisation, dioxin emissions from fly ash, valorisation of bottom ash and heavy metal removal. The evolution of MSWI ashes treatment technologies is also discussed, together with the challenges and future research directions. This is the first bibliometric analysis on global MSWI ashes research based on a sufficiently large dataset, which could provide new insights for researchers to initiate further research with leading institutions/authors and ultimately advance this research field.


Asunto(s)
Ceniza del Carbón/química , Eliminación de Residuos , Residuos Sólidos , Bibliometría , China , Ceniza del Carbón/análisis , Incineración , Residuos Sólidos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA