Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998486

RESUMEN

Dietary fibre (DF) is important for overall health and disease prevention. However, the intake of DF in Westernised countries is below the recommended level, largely due to the excessive consumption of low-fibre foods. Fortifying staple foods, such as bread, with dietary fibre ingredients is one approach to closing the fibre gap in our diet. However, incorporating purified and chemically modified fibre ingredients into food is challenging. This study unveils interactions between soluble-fermentable (arabinoxylan), insoluble-fermentable (resistant starch type IV) and insoluble-unfermentable (cellulose) fibre ingredients and their impact on bread quality using Response Surface Methodology. This resulted in an optimised mixture of these fibre ingredients that can coexist within a bread matrix while maintaining quality characteristics comparable to white wheat bread. The partial replacement of flour with fibre ingredients led to an interference with the gluten network causing a reduction in gluten strength by 12.4% and prolonged gluten network development time by 24.4% compared to the control (no fibre addition). However, the CO2 retention coefficient during dough fermentation was not affected by fibre ingredient inclusion. The fibre content of the white bread was increased by 128%, with only a marginal negative impact on bread quality. Additionally, the fibre-fortified bread showed a lower release of reducing sugars during in vitro starch digestion. This study illustrates the synergy of different types of fibre ingredients in a bread system to advance in closing the fibre gap.

2.
Foods ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254593

RESUMEN

Replacing eggs without influencing pound cakes' texture, appearance, and taste is challenging. Ovalbumin, the major protein in egg white, contributes to the structures of cakes by providing SH Groups that form a firm gel during baking. However, there is a shift in the consumers' behaviour regarding health, well-being, animal welfare standards, and environmental concerns. To meet upcoming trends and consumer needs, 102 egg replacement products were launched globally to the best of the authors' knowledge, with 20 of them advertised as suitable for baking applications. Ten locally available commercial egg replacers with a range of protein contents were chosen and applied in a pound cake model system to evaluate their functionality by evaluating cake and cake batter quality. Three different categories of egg replacements were chosen: replacers containing no protein (R1-R3), a low amount of protein (1-10 g/100 g; R4-R5), and a high amount of protein (>10 g/100 g; R6-R10). Those were compared to three control cakes containing powdered whole egg, fresh egg, and liquid whole egg. All the analysed egg replacers significantly differed from the control cakes, including low-protein egg replacement R4. Despite R4 achieving the highest specific volume (1.63 ± 0.07 mL/g) and comparable texture values, none of the examined egg replacers compared favourably with the egg control cakes regarding appearance, physical and textural properties, and nutritional value.

3.
J Agric Food Chem ; 71(28): 10543-10564, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37428126

RESUMEN

There is an urgent requirement to minimize food waste and create more sustainable food systems that address global increases in malnutrition and hunger. The nutritional value of brewers' spent grain (BSG) makes it attractive for upcycling into value-added ingredients rich in protein and fiber having a lower environmental impact than comparable plant-based ingredients. BSG is predictably available in large quantities globally and can therefore play a role in addressing hunger in the developing world via the fortification of humanitarian food aid products. Moreover, addition of BSG-derived ingredients can improve the nutritional profile of foods commonly consumed in more developed regions, which may aid in reducing the prevalence of dietary-related disease and mortality. Challenges facing the widespread utilization of upcycled BSG ingredients include regulatory status, variability of raw material composition, and consumer perception as low-value waste products; however, the rapidly growing upcycled food market suggests increasing consumer acceptability and opportunities for significant market growth via effective new product innovation and communication strategies.


Asunto(s)
Desnutrición , Eliminación de Residuos , Alimentos , Antioxidantes/análisis , Dieta Vegetariana , Grano Comestible/química
4.
Foods ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37048370

RESUMEN

The process of upcycling and incorporating food by-products into food systems as functional ingredients has become a central focus of research. Barley rootlets (BR) are a by-product of the malting and brewing industries that can be valorised using lactic acid bacteria fermentation. This research investigates the effects of the inclusion of unfermented (BR-UnF), heat-sterilised (BR-Ster), and five fermented BR ingredients (using Weissella cibaria MG1 (BR-MG1), Leuconostoc citreum TR116 (BR-TR116), Lactiplantibacillus plantarum FST1.7 (BR-FST1.7), Lactobacillus amylovorus FST2.11 (BR-FST2.11), and Limosilactobacillus reuteri R29 (BR-R29) in bread. The antifungal compounds in BR ingredients and the impact of BR on dough rheology, gluten development, and dough mixing properties were analysed. Additionally, their effects on the techno-functional characteristics, in vitro starch digestibility, and sensory quality of bread were determined. BR-UnF showed dough viscoelastic properties and bread quality comparable to the baker's flour (BF). BR-MG1 inclusion ameliorated bread specific volume and reduced crumb hardness. Breads containing BR-TR116 had comparable bread quality to BF, while the inclusion of BR-R29 substantially slowed microbial spoilage. Formulations containing BR-FST2.11 and BR-FST1.7 significantly reduced the amounts of sugar released from breads during a simulated digestion and resulted in a sourdough-like flavour profile. This study highlights how BR fermentation can be tailored to achieve desired bread characteristics.

5.
Foods ; 12(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36832874

RESUMEN

Plant protein sources, as a part of developing sustainable food systems, are currently of interest globally. Brewer's spent grain (BSG) is the most plentiful by-product of the brewing industry, representing ~85% of the total side streams produced. Although nutritionally dense, there are very few methods of upcycling these materials. High in protein, BSG can serve as an ideal raw material for protein isolate production. This study details the nutritional and functional characteristics of BSG protein isolate, EverPro, and compares these with the technological performance of the current gold standard plant protein isolates, pea and soy. The compositional characteristics are determined, including amino acid analysis, protein solubility, and protein profile among others. Related physical properties are determined, including foaming characteristics, emulsifying properties, zeta potential, surface hydrophobicity, and rheological properties. Regarding nutrition, EverPro meets or exceeds the requirement of each essential amino acid per g protein, with the exception of lysine, while pea and soy are deficient in methionine and cysteine. EverPro has a similar protein content to the pea and soy isolates, but far exceeds them in terms of protein solubility, with a protein solubility of ~100% compared to 22% and 52% for pea and soy isolates, respectively. This increased solubility, in turn, affects other functional properties; EverPro displays the highest foaming capacity and exhibits low sedimentation activity, while also possessing minimal gelation properties and low emulsion stabilising activity when compared to pea and soy isolates. This study outlines the functional and nutritional properties of EverPro, a brewer's spent grain protein, in comparison to commercial plant protein isolates, indicating the potential for the inclusion of new, sustainable plant-based protein sources in human nutrition, in particular dairy alternative applications.

6.
Eur Food Res Technol ; 249(1): 167-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36466321

RESUMEN

The non-alcoholic beer (NAB) sector has experienced steady growth in recent years, with breweries continuously seeking new ways to fulfil consumer demands. NAB can be produced by limited fermentation of non-Saccharomyces yeasts; however, beer produced in this manner is often critiqued for its sweet taste and wort-like off-flavours due to high levels of residual sugars and lack of flavour metabolites. The use of Lactobacillus in limited co-fermentation with non-Saccharomyces yeasts is a novel approach to produce NABs with varying flavour and aroma characteristics. In this study, lab-scale fermentations of Lachancea fermentati KBI 12.1 and Cyberlindnera subsufficiens C6.1 with Lactiplantibacillus plantarum FST 1.7 were performed and compared to a brewer's yeast, Saccharomyces cerevisiae WLP001. Fermentations were monitored for pH, TTA, extract reduction, alcohol production, and microbial cell count. The final beers were analysed for sugar and organic acid concentration, free amino nitrogen content (FAN), glycerol, and levels of volatile metabolites. The inability of the non-Saccharomyces yeasts to utilise maltotriose as an energy source resulted in extended fermentation times compared to S. cerevisiae WLP001. Co-fermentation of yeasts with lactic acid bacteria (LAB) resulted in a decreased pH, higher TTA and increased levels of lactic acid in the final beers. The overall acceptability of the NABs produced by co-fermentation was higher than or similar to that of the beers fermented with the yeasts alone, indicating that LAB fermentation did not negatively impact the sensory attributes of the beer. C. subsufficiens C6.1 and L. plantarum FST 1.7 NAB was characterised as fruity tasting with the significantly higher ester concentrations masking the wort-like flavours resulting from limited fermentation. NAB produced with L. fermentati KBI12.1 and L. plantarum FST1.7 had decreased levels of the undesirable volatile compound diacetyl and was described as 'fruity' and 'acidic', with the increased sourness masking the sweet, wort-like characteristics of the NAB. Moreover, this NAB was ranked as the most highly acceptable in the sensory evaluation. In conclusion, the limited co-fermentation of non-Saccharomyces yeasts with LAB is a promising strategy for the production of NAB.

7.
Food Microbiol ; 99: 103835, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119119

RESUMEN

In this study, we examined the ability of nisin A and a rationally assembled bank of 36 nisin derivative producing Lactococcus lactis strains to inhibit Listeria. A broth-based bioluminescence assay for screening single and combinations of bioengineered nisin derivatives using cell-free supernatants (CFS) from nisin derivative producing strains was developed. In this way, we screened 630 combinations of nisin derivative producing strains, identifying two (CFS from M17Q + N20P and M17Q + S29E) which exhibited enhanced anti-listerial activity when used together compared to when used alone, or to the nisin A producing strain. Minimal inhibitory concentration assays performed with purified peptides revealed than when used singly, the specific activities of M17Q, N20P and S29E (3.75-7.5 µM) against L. innocua were equal to, or less than that of nisin A (MIC of 3.75 µM). Broth-based growth curve assays using purified peptides demonstrated that use of the double peptide combinations and a triple peptide combination (M17Q + N20P + S29E) resulted in an extended lag phase of L. innocua, while kill curve assays confirmed the enhanced bactericidal activity of the combinations in comparison to the single derivative peptides or nisin A. Furthermore, the enhanced activity of the M17Q + N20P combination was maintained in a model food system (frankfurter homogenate) at both chill (4 °C) and abusive (20 °C) temperature conditions, with final cell numbers significantly less (1-2 log10 CFU/ml) than those observed with the derivative peptides alone, or nisin A. To our knowledge, this study is the first investigation that combines bioengineered bacteriocins with the aim of discovering a combination with enhanced antimicrobial activity.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Lactococcus lactis/metabolismo , Listeria/efectos de los fármacos , Nisina/metabolismo , Nisina/farmacología , Antibacterianos/química , Bioingeniería , Lactococcus lactis/genética , Listeria/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Nisina/química , Nisina/genética
8.
Foods ; 10(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917815

RESUMEN

The addition of contaminated powdered spices and seasonings to finished products which do not undergo further processing represents a significant concern for food manufacturers. To reduce the incidence of bacterial contamination, seasoning ingredients should be subjected to a decontamination process. Ultraviolet light emitting diodes (UV-LEDs) have been suggested as an alternative to UV lamps for reducing the microbial load of foods, due to their increasing efficiency, robustness and decreasing cost. In this study, we investigated the efficacy of UV-LED devices for the inactivation of four bacteria (Listeria monocytogenes, Escherichia coli, Bacillus subtilis and Salmonella Typhimurium) on a plastic surface and in four powdered seasoning ingredients (onion powder, garlic powder, cheese and onion powder and chilli powder). Surface inactivation experiments with UV mercury lamps, UVC-LEDs and UVA-LEDs emitting at wavelengths of 254 nm, 270 nm and 365 nm, respectively, revealed that treatment with UVC-LEDs were comparable to, or better than those observed using the mercury lamp. Bacterial reductions in the seasoning powders with UVC-LEDs were less than in the surface inactivation experiments, but significant reductions of 0.75-3 log10 colony forming units (CFU) were obtained following longer (40 s) UVC-LED exposure times. Inactivation kinetics were generally nonlinear, and a comparison of the predictive models highlighted that microbial inactivation was dependent on the combination of powder and microorganism. This study is the first to report on the efficacy of UV-LEDs for the inactivation of several different bacterial species in a variety of powdered ingredients, highlighting the potential of the technology as an alternative to the traditional UV lamps used in the food industry.

9.
Food Microbiol ; 87: 103381, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31948622

RESUMEN

Indirect impedance has been used for the detection and enumeration of bacteria, however there is limited data regarding the ability of the method to measure growth and inhibition of microorganisms in food in response to preservatives. The aim of this study was to evaluate the suitability of the technique to determine maximum growth rates of Listeria innocua (used as a surrogate for Listeria monocytogenes) in complex food matrices to which multiple preservative factors had been applied and assess the suitability of the data for use in predictive microbiology. Growth of L. innocua in laboratory medium (BHI broth) and two food matrices (zucchini purée and béarnaise sauce) under varying conditions of pH (5 & 5.3), water activity (0.93, 0.96 & 0.98) and acetic and propionic acid concentration (0, 1 & 2 mM) was monitored by the conductimetric Rapid Automated Bacterial Impedance Technology (R.A.B.I.T) system by means of CO2 emission for up to 120 h. Growth rates of L. innocua were determined for several conditions across the three test matrices and a good correlation between detection times and initial inoculum level was observed in most cases (R2 ≥ 0.82). However, growth of L. innocua was not detected in a large number of conditions and comparison of growth rates determined by indirect impedance to those determined by plate counts indicated that in general, the R.A.B.I.T. system under-estimated growth. This study demonstrates that there are limitations associated with the technology, and as a result the system may be unsuitable for measuring microbial growth rates in complex food matrices under the environmental conditions tested and within the time duration of the study.


Asunto(s)
Recuento de Colonia Microbiana/métodos , Técnicas Electroquímicas/métodos , Microbiología de Alimentos/métodos , Listeria/química , Listeria/crecimiento & desarrollo , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Impedancia Eléctrica , Contaminación de Alimentos/análisis , Concentración de Iones de Hidrógeno , Listeria/metabolismo , Listeria monocytogenes/química , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/metabolismo , Agua/análisis , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...