Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Microbiol Spectr ; 12(1): e0196423, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38099617

RESUMEN

Horizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation.


Asunto(s)
Transferencia de Gen Horizontal , Microbiota , Animales , Porcinos , Genoma Bacteriano , Antibacterianos , Bacterias/genética , Genes Bacterianos
2.
Microbiol Spectr ; 11(4): e0510722, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37306567

RESUMEN

The MLST scheme currently used for Enterococcus faecium typing was designed in 2002 and is based on putative gene functions and Enterococcus faecalis gene sequences available at that time. As a result, the original MLST scheme does not correspond to the real genetic relatedness of E. faecium strains and often clusters genetically distant strains to the same sequence types (ST). Nevertheless, typing has a significant impact on the subsequent epidemiological conclusions and introduction of appropriate epidemiological measures, thus it is crucial to use a more accurate MLST scheme. Based on the genome analysis of 1,843 E. faecium isolates, a new scheme, consisting of 8 highly discriminative loci, was created in this study. These strains were divided into 421 STs using the new MLST scheme, as opposed to 223 STs assigned by the original MLST scheme. The proposed MLST has a discriminatory power of D = 0.983 (CI95% 0.981 to 0.984), compared to the original scheme's D = 0.919 (CI95% 0.911 to 0.927). Moreover, we identified new clonal complexes with our newly designed MLST scheme. The scheme proposed here is available within the PubMLST database. Although whole genome sequencing availability has increased rapidly, MLST remains an integral part of clinical epidemiology, mainly due to its high standardization and excellent robustness. In this study, we proposed and validated a new MLST scheme for E. faecium, which is based on genome-wide data and thus reflects the tested isolates' more accurate genetic similarity. IMPORTANCE Enterococcus faecium is one of the most important pathogens causing health care associated infections. One of the main reasons for its clinical importance is a rapidly spreading resistance to vancomycin and linezolid, which significantly complicates antibiotic treatment of infections caused by such resistant strains. Monitoring the spread and relationships between resistant strains causing severe conditions represents an important tool for implementing appropriate preventive measures. Therefore, there is an urgent need to establish a robust method enabling strain monitoring and comparison at the local, national, and global level. Unfortunately, the current, extensively used MLST scheme does not reflect the real genetic relatedness between individual strains and thus does not provide sufficient discriminatory power. This can lead directly to incorrect epidemiological measures due to insufficient accuracy and biased results.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Humanos , Enterococcus faecium/genética , Tipificación de Secuencias Multilocus/métodos , Infecciones por Bacterias Grampositivas/epidemiología , Antibacterianos , Secuenciación Completa del Genoma
3.
Microbiol Spectr ; 11(1): e0357122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36629420

RESUMEN

The Pseudomonas aeruginosa population has a nonclonal epidemic structure. It is generally composed of a limited number of widespread clones selected from a background of many rare and unrelated genotypes recombining at high frequency. Due to the increasing prevalence of nosocomial infections caused by multidrug-resistant/extensively drug-resistant (MDR/XDR) strains, it is advisable to implement infection control measures. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) are considered the gold standard methods in bacterial typing, despite being limited by cost, staff, and instrumental demands. Here, we present a novel mini-MLST scheme for P. aeruginosa rapid genotyping based on high-resolution melting analysis. Using the proposed mini-MLST scheme, 3,955 existing sequence types (STs) were converted into 701 melting types (MelTs), resulting in a discriminatory power of D = 0.993 (95% confidence interval [CI], 0.992 to 0.994). Whole-genome sequencing of 18 clinical isolates was performed to support the newly designed mini-MLST scheme. The clonal analysis of STs belonging to MelTs associated with international high-risk clones (HRCs) performed by goeBURST software revealed that a high proportion of the included STs are highly related to HRCs and have also been witnessed as responsible for serious infections. Therefore, mini-MLST provides a clear warning for the potential spread of P. aeruginosa clones recognized as MDR/XDR strains with possible serious outcomes. IMPORTANCE In this study, we designed a novel mini-MLST typing scheme for Pseudomonas aeruginosa. Its great discriminatory power, together with ease of performance and short processing time, makes this approach attractive for prospective typing of large isolate sets. Integrating the novel P. aeruginosa molecular typing scheme enables the development and spread of MDR/XDR high-risk clones to be investigated.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Tipificación de Secuencias Multilocus , Epidemiología Molecular/métodos , Estudios Prospectivos , Genotipo , Células Clonales , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/microbiología
4.
BMC Genomics ; 23(Suppl 3): 445, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581824

RESUMEN

BACKGROUND: Bacterial genotyping is a crucial process in outbreak investigation and epidemiological studies. Several typing methods such as pulsed-field gel electrophoresis, multilocus sequence typing (MLST) and whole genome sequencing are currently used in routine clinical practice. However, these methods are costly, time-consuming and have high computational demands. An alternative to these methods is mini-MLST, a quick, cost-effective and robust method based on high-resolution melting analysis. Nevertheless, no standardized approach to identify markers suitable for mini-MLST exists. Here, we present a pipeline for variable fragment detection in unmapped reads based on a modified hybrid assembly approach using data from one sequencing platform. RESULTS: In routine assembly against the reference sequence, high variable reads are not aligned and remain unmapped. If de novo assembly of them is performed, variable genomic regions can be located in created scaffolds. Based on the variability rates calculation, it is possible to find a highly variable region with the same discriminatory power as seven housekeeping gene fragments used in MLST. In the work presented here, we show the capability of identifying one variable fragment in de novo assembled scaffolds of 21 Escherichia coli genomes and three variable regions in scaffolds of 31 Klebsiella pneumoniae genomes. For each identified fragment, the melting temperatures are calculated based on the nearest neighbor method to verify the mini-MLST's discriminatory power. CONCLUSIONS: A pipeline for a modified hybrid assembly approach consisting of reference-based mapping and de novo assembly of unmapped reads is presented. This approach can be employed for the identification of highly variable genomic fragments in unmapped reads. The identified variable regions can then be used in efficient laboratory methods for bacterial typing such as mini-MLST with high discriminatory power, fully replacing expensive methods such as MLST. The results can and will be delivered in a shorter time, which allows immediate and fast infection monitoring in clinical practice.


Asunto(s)
Bacterias , Genoma , Tipificación de Secuencias Multilocus/métodos , Genotipo , Bacterias/genética , Técnicas de Tipificación Bacteriana/métodos , Escherichia coli/genética
5.
Front Microbiol ; 13: 942179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187947

RESUMEN

Recently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals-squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.

6.
Microbiol Spectr ; 10(1): e0181721, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138156

RESUMEN

Staphylococcus aureus is a major bacterial human pathogen that causes a wide variety of clinical manifestations. The main aim of the presented study was to determine and optimize a novel sequencing independent approach that enables molecular typing of S. aureus isolates and elucidates the transmission of emergent clones between patients. In total, 987 S. aureus isolates including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) isolates were used to evaluate the novel typing approach combining high-resolution melting (HRM) analysis of multilocus sequence typing (MLST) genes (mini-MLST) and spa gene (spa-HRM). The novel approach's discriminatory ability was evaluated by whole-genome sequencing (WGS). The clonal relatedness of tested isolates was set by the BURP and BURST approach using spa and MLST data, respectively. Mini-MLST classified the S. aureus isolates into 38 clusters, followed by spa-HRM classifying the isolates into 101 clusters. The WGS proved HRM-based methods to effectively differentiate between related S. aureus isolates. Visualizing evolutionary relationships among different spa-types provided by the BURP algorithm showed comparable results to MLST/mini-MLST clonal clusters. We proved that the combination of mini-MLST and spa-HRM is rapid, reproducible, and cost-efficient. In addition to high discriminatory ability, the correlation between spa evolutionary relationships and mini-MLST clustering allows the variability in population structure to be monitored. IMPORTANCE Rapid and cost-effective molecular typing tools for Staphylococcus aureus epidemiological applications such as transmission tracking, source attribution and outbreak investigations are highly desirable. High-resolution melting based methods are effective alternative to those based on sequencing. Their good reproducibility and easy performance allow prospective typing of large set of isolates while reaching great discriminatory power. In this study, we established a new epidemiological approach to S. aureus typing. This scheme has the potential to greatly improve epidemiological investigations of S. aureus.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Control de Infecciones , Tipificación Molecular/métodos , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Tipificación de Secuencias Multilocus , Estudios Prospectivos , Reproducibilidad de los Resultados , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/clasificación , Secuenciación Completa del Genoma
7.
Klin Mikrobiol Infekc Lek ; 28(4): 106-115, 2022 Dec.
Artículo en Checo | MEDLINE | ID: mdl-37586043

RESUMEN

Whole-genome sequencing (WGS) is a modern method that allows deep understanding of studied organisms and is currently gaining importance in molecular microbiology. Data obtained by whole-genome sequencing can be used for a number of different analyses, specifically in bacterial epidemiology. The authors provide an overview of the methods that are used for bacterial typing, description of their principles with subsequent possibilities for evaluation of the obtained data and applications in hospital research.


Asunto(s)
Bacterias , Humanos , Bacterias/genética , Técnicas de Tipificación Bacteriana/métodos , Tipificación de Secuencias Multilocus/métodos , Secuenciación Completa del Genoma/métodos
8.
Front Microbiol ; 12: 729977, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745033

RESUMEN

Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023T and P7388T were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed.

9.
Sci Rep ; 11(1): 16572, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400722

RESUMEN

Routinely used typing methods including MLST, rep-PCR and whole genome sequencing (WGS) are time-consuming, costly, and often low throughput. Here, we describe a novel mini-MLST scheme for Eschericha coli as an alternative method for rapid genotyping. Using the proposed mini-MLST scheme, 10,946 existing STs were converted into 1,038 Melting Types (MelTs). To validate the new mini-MLST scheme, in silico analysis was performed on 73,704 strains retrieved from EnteroBase resulting in discriminatory power D = 0.9465 (CI 95% 0.9726-0.9736) for mini-MLST and D = 0.9731 (CI 95% 0.9726-0.9736) for MLST. Moreover, validation on clinical isolates was conducted with a significant concordance between MLST, rep-PCR and WGS. To conclude, the great portability, efficient processing, cost-effectiveness, and high throughput of mini-MLST represents immense benefits, even when accompanied with a slightly lower discriminatory power than other typing methods. This study proved mini-MLST is an ideal method to screen and subgroup large sets of isolates and/or quick strain typing during outbreaks. In addition, our results clearly showed its suitability for prospective surveillance monitoring of emergent and high-risk E. coli clones'.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Escherichia coli/genética , Genes Bacterianos , Técnicas de Genotipaje , Tipificación de Secuencias Multilocus/métodos , Polimorfismo de Nucleótido Simple , Composición de Base , Simulación por Computador , República Checa/epidemiología , Cartilla de ADN , ADN Bacteriano/química , Brotes de Enfermedades , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Genoma Bacteriano , Desnaturalización de Ácido Nucleico , Reacción en Cadena de la Polimerasa/métodos , Vigilancia de la Población , Secuencias Repetitivas de Ácidos Nucleicos , Secuenciación Completa del Genoma
10.
Genomics ; 113(5): 3103-3111, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224809

RESUMEN

Discovering copy number variation (CNV) in bacteria is not in the spotlight compared to the attention focused on CNV detection in eukaryotes. However, challenges arising from bacterial drug resistance bring further interest to the topic of CNV and its role in drug resistance. General CNV detection methods do not consider bacteria's features and there is space to improve detection accuracy. Here, we present a CNV detection method called CNproScan focused on bacterial genomes. CNproScan implements a hybrid approach and other bacteria-focused features and depends only on NGS data. We benchmarked our method and compared it to the previously published methods and we can resolve to achieve a higher detection rate together with providing other beneficial features, such as CNV classification. Compared with other methods, CNproScan can detect much shorter CNV events.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Eucariontes , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
11.
Front Microbiol ; 12: 631605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613503

RESUMEN

Genotyping methods are used to distinguish bacterial strains from one species. Thus, distinguishing bacterial strains on a global scale, between countries or local districts in one country is possible. However, the highly selected bacterial populations (e.g., local populations in hospital) are typically closely related and low diversified. Therefore, currently used typing methods are not able to distinguish individual strains from each other. Here, we present a novel pipeline to detect highly variable genetic segments for genotyping a closely related bacterial population. The method is based on a degree of disorder in analyzed sequences that can be represented by sequence entropy. With the identified variable sequences, it is possible to find out transmission routes and sources of highly virulent and multiresistant strains. The proposed method can be used for any bacterial population, and due to its whole genome range, also non-coding regions are examined.

12.
PLoS One ; 14(8): e0221187, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31408497

RESUMEN

Studying bacterial population diversity is important to understand healthcare associated infections' epidemiology and has a significant impact on dealing with multidrug resistant bacterial outbreaks. We characterised the extended-spectrum beta-lactamase producing K. pneumoniae (ESBLp KPN) population in our hospital using mini-MLST. Then we used whole genome sequencing (WGS) to compare selected isolates belonging to the most prevalent melting types (MelTs) and the colonization/infection pair isolates collected from one patient to study the ESBLp KPN population's genetic diversity. A total of 922 ESBLp KPN isolates collected between 7/2016 and 5/2018 were divided into 38 MelTs using mini-MLST with only 6 MelTs forming 82.8% of all isolates. For WGS, 14 isolates from the most prominent MelTs collected in the monitored period and 10 isolates belonging to the same MelTs collected in our hospital in 2014 were randomly selected. Resistome, virulome and ST were MelT specific and stable over time. A maximum of 23 SNV per core genome and 58 SNV per core and accessory genome were found. To determine the SNV relatedness cut-off values, 22 isolates representing colonization/infection pair samples obtained from 11 different patients were analysed by WGS with a maximum of 22 SNV in the core genome and 40 SNV in the core and accessory genome within pairs. The mini-MLST showed its potential for real-time epidemiology in clinical practice. However, for outbreak evaluation in a low diversity bacterial population, mini-MLST should be combined with more sensitive methods like WGS. Our findings showed there were only minimal differences within the core and accessory genome in the low diversity hospital population and gene based SNV analysis does not have enough discriminatory power to differentiate isolate relatedness. Thus, intergenic regions and mobile elements should be incorporated into the analysis scheme to increase discriminatory power.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Infecciones por Klebsiella/genética , Klebsiella pneumoniae/genética , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma , beta-Lactamasas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Infección Hospitalaria/enzimología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/genética , Infección Hospitalaria/microbiología , ADN Bacteriano/genética , Femenino , Humanos , Lactante , Recién Nacido , Infecciones por Klebsiella/enzimología , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/aislamiento & purificación , Masculino , Persona de Mediana Edad , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...