Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Disaster Med Public Health Prep ; 13(5-6): 995-1010, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31203830

RESUMEN

A national need is to prepare for and respond to accidental or intentional disasters categorized as chemical, biological, radiological, nuclear, or explosive (CBRNE). These incidents require specific subject-matter expertise, yet have commonalities. We identify 7 core elements comprising CBRNE science that require integration for effective preparedness planning and public health and medical response and recovery. These core elements are (1) basic and clinical sciences, (2) modeling and systems management, (3) planning, (4) response and incident management, (5) recovery and resilience, (6) lessons learned, and (7) continuous improvement. A key feature is the ability of relevant subject matter experts to integrate information into response operations. We propose the CBRNE medical operations science support expert as a professional who (1) understands that CBRNE incidents require an integrated systems approach, (2) understands the key functions and contributions of CBRNE science practitioners, (3) helps direct strategic and tactical CBRNE planning and responses through first-hand experience, and (4) provides advice to senior decision-makers managing response activities. Recognition of both CBRNE science as a distinct competency and the establishment of the CBRNE medical operations science support expert informs the public of the enormous progress made, broadcasts opportunities for new talent, and enhances the sophistication and analytic expertise of senior managers planning for and responding to CBRNE incidents.


Asunto(s)
Derrame de Material Biológico/prevención & control , Liberación de Peligros Químicos/prevención & control , Servicios Médicos de Urgencia/métodos , Sustancias Explosivas/efectos adversos , Liberación de Radiactividad Peligrosa/prevención & control , Planificación en Desastres/organización & administración , Planificación en Desastres/tendencias , Servicios Médicos de Urgencia/tendencias , Humanos
2.
Health Secur ; 14(1): 1-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26828799

RESUMEN

Some types of public health emergencies could result in large numbers of patients with respiratory failure who need mechanical ventilation. Federal public health planning has included needs assessment and stockpiling of ventilators. However, additional federal guidance is needed to assist states in further allocating federally supplied ventilators to individual hospitals to ensure that ventilators are shipped to facilities where they can best be used during an emergency. A major consideration in planning is a hospital's ability to absorb additional ventilators, based on available space and staff expertise. A simple pro rata plan that does not take these factors into account might result in suboptimal use or unused scarce resources. This article proposes a conceptual framework that identifies the steps in planning and an important gap in federal guidance regarding the distribution of stockpiled mechanical ventilators during an emergency.


Asunto(s)
Planificación en Desastres/métodos , Salud Pública , Asignación de Recursos/métodos , Ventiladores Mecánicos/provisión & distribución , Humanos , Incidentes con Víctimas en Masa , Insuficiencia Respiratoria/terapia , Estados Unidos
3.
Disaster Med Public Health Prep ; 9(6): 634-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26450633

RESUMEN

OBJECTIVE: A large-scale public health emergency, such as a severe influenza pandemic, can generate large numbers of critically ill patients in a short time. We modeled the number of mechanical ventilators that could be used in addition to the number of hospital-based ventilators currently in use. METHODS: We identified key components of the health care system needed to deliver ventilation therapy, quantified the maximum number of additional ventilators that each key component could support at various capacity levels (ie, conventional, contingency, and crisis), and determined the constraining key component at each capacity level. RESULTS: Our study results showed that US hospitals could absorb between 26,200 and 56,300 additional ventilators at the peak of a national influenza pandemic outbreak with robust pre-pandemic planning. CONCLUSIONS: The current US health care system may have limited capacity to use additional mechanical ventilators during a large-scale public health emergency. Emergency planners need to understand their health care systems' capability to absorb additional resources and expand care. This methodology could be adapted by emergency planners to determine stockpiling goals for critical resources or to identify alternatives to manage overwhelming critical care need.


Asunto(s)
Salud Pública/instrumentación , Capacidad de Reacción/estadística & datos numéricos , Ventiladores Mecánicos/estadística & datos numéricos , Atención a la Salud/normas , Planificación en Desastres/métodos , Planificación en Desastres/normas , Recursos en Salud/estadística & datos numéricos , Humanos , Incidentes con Víctimas en Masa
4.
Clin Infect Dis ; 60 Suppl 1: S52-7, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25878301

RESUMEN

An outbreak in China in April 2013 of human illnesses due to avian influenza A(H7N9) virus provided reason for US public health officials to revisit existing national pandemic response plans. We built a spreadsheet model to examine the potential demand for invasive mechanical ventilation (excluding "rescue therapy" ventilation). We considered scenarios of either 20% or 30% gross influenza clinical attack rate (CAR), with a "low severity" scenario with case fatality rates (CFR) of 0.05%-0.1%, or a "high severity" scenario (CFR: 0.25%-0.5%). We used rates-of-influenza-related illness to calculate the numbers of potential clinical cases, hospitalizations, admissions to intensive care units, and need for mechanical ventilation. We assumed 10 days ventilator use per ventilated patient, 13% of total ventilator demand will occur at peak, and a 33.7% weighted average mortality risk while on a ventilator. At peak, for a 20% CAR, low severity scenario, an additional 7000 to 11,000 ventilators will be needed, averting a pandemic total of 35,000 to 55,000 deaths. A 30% CAR, high severity scenario, will need approximately 35,000 to 60,500 additional ventilators, averting a pandemic total 178,000 to 308,000 deaths. Estimates of deaths averted may not be realized because successful ventilation also depends on sufficient numbers of suitably trained staff, needed supplies (eg, drugs, reliable oxygen sources, suction apparatus, circuits, and monitoring equipment) and timely ability to match access to ventilators with critically ill cases. There is a clear challenge to plan and prepare to meet demands for mechanical ventilators for a future severe pandemic.


Asunto(s)
Planificación en Desastres/métodos , Gripe Humana/terapia , Pandemias , Ventiladores Mecánicos/provisión & distribución , Humanos , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/epidemiología , Gripe Humana/mortalidad , Unidades de Cuidados Intensivos/provisión & distribución , Modelos Teóricos , Salud Pública/métodos , Respiración Artificial/instrumentación , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...