Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 108(5): 1152-1156, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372722

RESUMEN

Moniliophthora perniciosa causes a destructive disease known as witches' broom disease of cacao (WBDC). WBDC has been responsible for major reductions in production or even total abandonment of cacao plantations in most countries that it has invaded. To date, however, the disease is known only from the cacao-producing regions of South America and a few Central American and Caribbean countries. It is not known from the Eastern Hemisphere and remains a major threat should it invade West Africa or Southeast Asia, where the majority of the world's chocolate production now occurs. In 2019, a pink pigmented mushroom was found fruiting from unidentified twigs in the Serra Vamba of Angola. The specimen was identified as M. perniciosa based on morphological and molecular analyses. Although Angola is not a major cacao-producing country, the presence of the fungus in the Eastern Hemisphere could be of global concern and may indicate the need for quarantine in Angola and vigilance in neighboring countries.


Asunto(s)
Agaricales , Cacao , Enfermedades de las Plantas , Angola , Cacao/microbiología , Enfermedades de las Plantas/microbiología , Filogenia
2.
BMC Genomics ; 24(1): 330, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322447

RESUMEN

BACKGROUND: Balanophoraceae plastomes are known for their highly condensed and re-arranged nature alongside the most extreme nucleotide compositional bias known to date, culminating in two independent reconfigurations of their genetic code. Currently, a large portion of the Balanophoraceae diversity remains unexplored, hindering, among others, evolutionary pattern recognition. Here, we explored newly sequenced plastomes of Sarcophyte sanguinea and Thonningia sanguinea. The reconstructed plastomes were analyzed using various methods of comparative genomics based on a representative taxon sampling. RESULTS: Sarcophyte, recovered sister to the other sampled Balanophoraceae s. str., has plastomes up to 50% larger than those currently published. Its gene set contains five genes lost in any other species, including matK. Five cis-spliced introns are maintained. In contrast, the Thonningia plastome is similarly reduced to published Balanophoraceae and retains only a single cis-spliced intron. Its protein-coding genes show a more biased codon usage compared to Sarcophyte, with an accumulation of in-frame TAG stop codons. Structural plastome comparison revealed multiple, previously unknown, structural rearrangements within Balanophoraceae. CONCLUSIONS: For the "minimal plastomes" of Thonningia, we propose a genetic code change identical to sister genus Balanophora. Sarcophyte however differs drastically from our current understanding on Balanophoraceae plastomes. With a less-extreme nucleotide composition, there is no evidence for an altered genetic code. Using comparative genomics, we identified a hotspot for plastome reconfiguration in Balanophoraceae. Based on previously published and newly identified structural reconfigurations, we propose an updated model of evolutionary plastome trajectories for Balanophoraceae, illustrating a much greater plastome diversity than previously known.


Asunto(s)
Balanophoraceae , Balanophoraceae/genética , Evolución Molecular , Secuencia de Bases , Evolución Biológica , Nucleótidos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...