Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Genes (Basel) ; 13(11)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36421833

RESUMEN

Tissue fragility, skin hyperextensibility and joint hypermobility are defining characteristics of Ehlers-Danlos syndrome (EDS). Human EDS is subclassified into fourteen types including dermatosparactic EDS, characterized by extreme skin fragility and caused by biallelic ADAMTS2 mutations. We report two novel, ADAMTS2 variants in DNA from EDS-affected dogs. Separate whole-genome sequences from a Pit Bull Terrier and an Alapaha Blue Blood Bulldog each contained a rare, homozygous variant (11:2280117delC, CanFam3.1), predicted to produce a frameshift in the transcript from the first coding ADAMTS2 exon (c.10delC) and a severely truncated protein product, p.(Pro4ArgfsTer175). The clinical features of these dogs and 4 others with the same homozygous deletion included multifocal wounds, atrophic scars, joint hypermobility, narrowed palpebral fissures, skin hyperextensibility, and joint-associated swellings. Due to severe skin fragility, the owners of all 6 dogs elected euthanasia before the dogs reached 13 weeks of age. Cross sections of collagen fibrils in post-mortem dermal tissues from 2 of these dogs showed hieroglyphic-like figures similar to those from cases of severe dermatosparaxis in other species. The whole-genome sequence from an adult Catahoula Leopard Dog contained a homozygous ADAMTS2 missense mutation, [11:2491238G>A; p.(Arg966His)]. This dog exhibited multifocal wounds, atrophic scars, and joint hypermobility, but has survived for at least 9 years. This report expands the spectrum of clinical features of the canine dermatosparactic subtype of EDS and illustrates the potential utility of subclassifying canine EDS by the identity of gene harboring the causal variant.


Asunto(s)
Proteínas ADAMTS , Síndrome de Ehlers-Danlos , Animales , Perros , Proteínas ADAMTS/genética , Atrofia , Cicatriz , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/veterinaria , Homocigoto , Inestabilidad de la Articulación , Fenotipo , Eliminación de Secuencia
2.
J Vet Intern Med ; 35(3): 1218-1230, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33769611

RESUMEN

Movement disorders are a heterogeneous group of clinical syndromes in humans and animals characterized by involuntary movements without changes in consciousness. Canine movement disorders broadly include tremors, peripheral nerve hyperexcitability disorders, paroxysmal dyskinesia, and dystonia. Of these, canine paroxysmal dyskinesias remain one of the more difficult to identify and characterize in dogs. Canine paroxysmal dyskinesias include an array of movement disorders in which there is a recurrent episode of abnormal, involuntary, movement. In this consensus statement, we recommend standard terminology for describing the various movement disorders with an emphasis on paroxysmal dyskinesia, as well as a preliminary classification and clinical approach to reporting cases. In the clinical approach to movement disorders, we recommend categorizing movements into hyperkinetic vs hypokinetic, paroxysmal vs persistent, exercise-induced vs not related to exercise, using a detailed description of movements using the recommended terminology presented here, differentiating movement disorders vs other differential diagnoses, and then finally, determining whether the paroxysmal dyskinesia is due to either inherited or acquired etiologies. This consensus statement represents a starting point for consistent reporting of clinical descriptions and terminology associated with canine movement disorders, with additional focus on paroxysmal dyskinesia. With consistent reporting and identification of additional genetic mutations responsible for these disorders, our understanding of the phenotype, genotype, and pathophysiology will continue to develop and inform further modification of these recommendations.


Asunto(s)
Corea , Enfermedades de los Perros , Discinesias , Animales , Corea/veterinaria , Enfermedades de los Perros/diagnóstico , Perros , Discinesias/diagnóstico , Discinesias/veterinaria , Mutación , Fenotipo
3.
G3 (Bethesda) ; 10(8): 2741-2751, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32518081

RESUMEN

A neutered male domestic medium-haired cat presented at a veterinary neurology clinic at 20 months of age due to progressive neurological signs that included visual impairment, focal myoclonus, and frequent severe generalized seizures that were refractory to treatment with phenobarbital. Magnetic resonance imaging revealed diffuse global brain atrophy. Due to the severity and frequency of its seizures, the cat was euthanized at 22 months of age. Microscopic examination of the cerebellum, cerebral cortex and brainstem revealed pronounced intracellular accumulations of autofluorescent storage material and inflammation in all 3 brain regions. Ultrastructural examination of the storage material indicated that it consisted almost completely of tightly-packed membrane-like material. The clinical signs and neuropathology strongly suggested that the cat suffered from a form of neuronal ceroid lipofuscinosis (NCL). Whole exome sequence analysis was performed on genomic DNA from the affected cat. Comparison of the sequence data to whole exome sequence data from 39 unaffected cats and whole genome sequence data from an additional 195 unaffected cats revealed a homozygous variant in CLN6 that was unique to the affected cat. This variant was predicted to cause a stop gain in the transcript due to a guanine to adenine transition (ENSFCAT00000025909:c.668G > A; XM_003987007.5:c.668G > A) and was the sole loss of function variant detected. CLN6 variants in other species, including humans, dogs, and sheep, are associated with the CLN6 form of NCL. Based on the affected cat's clinical signs, neuropathology and molecular genetic analysis, we conclude that the cat's disorder resulted from the loss of function of CLN6. This study is only the second to identify the molecular genetic basis of a feline NCL. Other cats exhibiting similar signs can now be screened for the CLN6 variant. This could lead to establishment of a feline model of CLN6 disease that could be used in therapeutic intervention studies.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Secuencia de Bases , Gatos , Codón sin Sentido , Perros , Homocigoto , Masculino , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , Ovinos
4.
Mol Genet Metab ; 127(1): 107-115, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31101435

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by progressive declines in neurological functions following normal development. The NCLs are distinguished from similar disorders by the accumulation of autofluorescent lysosomal storage bodies in neurons and many other cell types, and are classified as lysosomal storage diseases. At least 13 genes contain pathogenic sequence variants that underlie different forms of NCL. Naturally occurring canine NCLs can serve as models to develop better understanding of the disease pathologies and for preclinical evaluation of therapeutic interventions for these disorders. To date 14 sequence variants in 8 canine orthologs of human NCL genes have been found to cause progressive neurological disorders similar to human NCLs in 12 different dog breeds. A mixed breed dog with parents of uncertain breed background developed progressive neurological signs consistent with NCL starting at approximately 11 to 12 months of age, and when evaluated with magnetic resonance imaging at 21 months of age exhibited diffuse brain atrophy. Due to the severity of neurological decline the dog was euthanized at 23 months of age. Cerebellar and cerebral cortical neurons contained massive accumulations of autofluorescent storage bodies the contents of which had the appearance of tightly packed membranes. A whole genome sequence, generated with DNA from the affected dog contained a homozygous C-to-T transition at position 30,574,637 on chromosome 22 which is reflected in the mature CLN5 transcript (CLN5: c.619C > T) and converts a glutamine codon to a termination codon (p.Gln207Ter). The identical nonsense mutation has been previously associated with NCL in Border Collies, Australian Cattle Dogs, and a German Shepherd-Australian Cattle Dog mix. The current whole genome sequence and a previously generated whole genome sequence for an Australian Cattle Dog with NCL share a rare homozygous haplotype that extends for 87 kb surrounding 22: 30, 574, 637 and includes 21 polymorphic sites. When genotyped at 7 of these polymorphic sites, DNA samples from the German Shepherd-Australian Cattle Dog mix and from 5 Border Collies with NCL that were homozygous for the CLN5: c.619 T allele also shared this homozygous haplotype, suggesting that the NCL in all of these dogs stems from the same founding mutation event that may have predated the establishment of the modern dog breeds. If so, the CLN5 nonsence allele is probably segregating in other, as yet unidentified, breeds. Thus, dogs exhibiting similar NCL-like signs should be screened for this CLN5 nonsense allele regardless of breed.


Asunto(s)
Codón sin Sentido , Enfermedades de los Perros/genética , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , Animales , Australia , Cruzamiento , Cerebelo/patología , Perros/genética , Homocigoto , Imagen por Resonancia Magnética , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Lipofuscinosis Ceroideas Neuronales/genética , Linaje , Secuenciación Completa del Genoma
5.
Neurogenetics ; 18(1): 39-47, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27891564

RESUMEN

Hereditary paroxysmal dyskinesias (PxD) are a heterogeneous group of movement disorders classified by frequency, duration, and triggers of the episodes. A young-adult onset canine PxD has segregated as an autosomal recessive trait in Soft-Coated Wheaten Terriers. The medical records and videos of episodes from 25 affected dogs were reviewed. The episodes of hyperkinesia and dystonia lasted from several minutes to several hours and could occur as often as >10/day. They were not associated with strenuous exercise or fasting but were sometimes triggered by excitement. The canine PxD phenotype most closely resembled paroxysmal non-kinesigenic dyskinesia (PNKD) of humans. Whole genome sequences were generated with DNA from 2 affected dogs and analyzed in comparison to 100 control canid whole genome sequences. The two whole genome sequences from dogs with PxD had a rare homozygous PIGN:c.398C > T transition, which predicted the substitution of an isoleucine for a highly conserved threonine in the encoded enzyme. All 25 PxD-affected dogs were PIGN:c.398T allele homozygotes, whereas there were no c.398T homozygotes among 1185 genotyped dogs without known histories of PxD. PIGN encodes an enzyme involved in the biosynthesis of glycosylphosphatidylinositol (GPI), which anchors a variety of proteins including CD59 to the cell surface. Flow cytometry of PIGN-knockout HEK239 cells expressing recombinant human PIGN with the c.398T variant showed reduced CD59 expression. Mutations in human PIGN have been associated with multiple congenital anomalies-hypotonia-seizures syndrome-1 (MCAHS1). Movement disorders can be a part of MCAHS1, but this is the first PxD associated with altered GPI anchor function.


Asunto(s)
Corea/genética , Enfermedades de los Perros/genética , Mutación Missense , Fosfotransferasas/genética , Animales , Corea/veterinaria , Perros , Femenino , Glicosilfosfatidilinositoles/metabolismo , Células HEK293 , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Fosfotransferasas/metabolismo
6.
G3 (Bethesda) ; 6(9): 2687-92, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27527794

RESUMEN

Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Proteínas de Neoplasias/genética , Animales , Secuencia de Bases , Cruzamiento , Inversión Cromosómica/genética , Mapeo Cromosómico , Perros , Exones/genética , Femenino , Genotipo , Neuropatías Hereditarias Sensoriales y Autónomas/patología , Neuropatías Hereditarias Sensoriales y Autónomas/veterinaria , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana , Neuronas Motoras/patología , Mutación , Sitios de Empalme de ARN/genética
7.
Clin Transl Med ; 5(Suppl 1): 26, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27558513

RESUMEN

TABLE OF CONTENTS: A1 One health advances and successes in comparative medicine and translational researchCheryl StroudA2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanomaIgor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. CurielA3 Viroimmunotherapy for malignant melanoma in the companion dog modelJeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. HenryA4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanomaPhilip J. BergmanA5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcomaNicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne PatersonA6 Human clinical development of ADXS-HER2Daniel O'ConnorA7 Leveraging use of data for both human and veterinary benefitLaura S. TremlA8 Biologic replacement of the knee: innovations and early clinical resultsJames P. StannardA9 Mizzou BioJoint Center: a translational success storyJames L. CookA10 University and industry translational partnership: from the lab to commercializationMarc JacobsA11 Beyond docking: an evolutionarily guided OneHealth approach to drug discoveryGerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew SkaffA12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandryAmado S. GuloyA13 A cloud-based programmable platform for healthHarlen D. HaysA14 Comparative oncology: One Health in actionAmy K. LeBlancA15 Companion animal diseases bridge the translational gap for human neurodegenerative diseaseJoan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O'BrienA16 Duchenne muscular dystrophy gene therapyDongsheng DuanA17 Polycystic kidney disease: cellular mechanisms to emerging therapiesJames P. CalvetA18 The domestic cat as a large animal model for polycystic kidney diseaseLeslie A. Lyons, Barbara GandolfiA19 The support of basic and clinical research by the Polycystic Kidney Disease FoundationDavid A. BaronA20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogsMark L. WeissA21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based productsDebra A. WebsterA22 Regenerative medicine approaches to Type 1 diabetes treatmentFrancis N. KaranuA23 The zoobiquity of canine diabetes mellitus, man's best friend is a friend indeed-islet transplantationEdward J. RobbA24 One Medicine: a development model for cellular therapy of diabetesRobert J. Harman.

8.
Neurobiol Dis ; 86: 75-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26607784

RESUMEN

An autosomal recessive disease of Black Russian Terriers was previously described as a juvenile-onset, laryngeal paralysis and polyneuropathy similar to Charcot Marie Tooth disease in humans. We found that in addition to an axonal neuropathy, affected dogs exhibit microphthalmia, cataracts, and miotic pupils. On histopathology, affected dogs exhibit a spongiform encephalopathy characterized by accumulations of abnormal, membrane-bound vacuoles of various sizes in neuronal cell bodies, axons and adrenal cells. DNA from an individual dog with this polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV) was used to generate a whole genome sequence which contained a homozygous RAB3GAP1:c.743delC mutation that was absent from 73 control canine whole genome sequences. An additional 12 Black Russian Terriers with POANV were RAB3GAP1:c.743delC homozygotes. DNA samples from 249 Black Russian Terriers with no known signs of POANV were either heterozygotes or homozygous for the reference allele. Mutations in human RAB3GAP1 cause Warburg micro syndrome (WARBM), a severe developmental disorder characterized by abnormalities of the eye, genitals and nervous system including a predominantly axonal peripheral neuropathy. RAB3GAP1 encodes the catalytic subunit of a GTPase activator protein and guanine exchange factor for Rab3 and Rab18 respectively. Rab proteins are involved in membrane trafficking in the endoplasmic reticulum, axonal transport, autophagy and synaptic transmission. The neuronal vacuolation and membranous inclusions and vacuoles in axons seen in this canine disorder likely reflect alterations of these processes. Thus, this canine disease could serve as a model for WARBM and provide insight into its pathogenesis and treatment.


Asunto(s)
Mutación , Polineuropatías/genética , Síndrome de Walker-Warburg/genética , Proteínas de Unión al GTP rab3/genética , Animales , Catarata/genética , Catarata/patología , Cerebelo/metabolismo , Cerebelo/ultraestructura , Citoplasma/ultraestructura , Modelos Animales de Enfermedad , Perros , Femenino , Músculos Laríngeos/ultraestructura , Laringe/patología , Masculino , Neuronas/metabolismo , Neuronas/ultraestructura , Fenotipo , Polineuropatías/patología , Polineuropatías/fisiopatología , Polineuropatías/veterinaria , Síndrome de Walker-Warburg/patología , Síndrome de Walker-Warburg/fisiopatología , Síndrome de Walker-Warburg/veterinaria
9.
Proc Natl Acad Sci U S A ; 113(1): 152-7, 2016 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699508

RESUMEN

Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2-3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants.


Asunto(s)
Animales Domésticos/genética , Conjuntos de Datos como Asunto , Enfermedades de los Perros/genética , Perros/genética , Variación Genética , Selección Artificial/genética , Animales , Especies en Peligro de Extinción , Genoma/genética , Heterocigoto , Endogamia , Densidad de Población , Selección Genética , Lobos/genética
10.
Acta Vet Scand ; 57: 26, 2015 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-25998802

RESUMEN

BACKGROUND: Hereditary ataxias with similar phenotypes were reported in the Smooth-Haired Fox Terrier, the Jack Russell Terrier and the Parson Russell Terrier. However, segregation analyses showed differing inheritance modes in these breeds. Recently, molecular genetic studies on the Russell group of terriers found independent mutations in KCNJ10 and CAPN1, each associated with a specific clinical subtype of inherited ataxia. The aim of this study was to clarify whether or not Smooth-Haired Fox Terriers with hereditary ataxia and dogs of other related breeds harbor either of the same mutations. A sub goal was to update the results of KCNJ10 genotyping in Russell group terriers. FINDINGS: Three Smooth-Haired Fox Terriers with hereditary ataxia and two Toy Fox Terriers with a similar phenotype were all homozygous for the KCNJ10 mutation. The same mutation was also found in a heterozygous state in clinically unaffected Tenterfield Terriers (n = 5) and, in agreement with previous studies, in Jack Russell Terriers, Parson Russell Terriers, and Russell Terriers. CONCLUSIONS: A KCNJ10 mutation, previously associated with an autosomal recessive spinocerebellar ataxia in Jack Russell Terriers, Parson Russell Terriers, and Russell Terriers segregates in at least three more breeds descended from British hunting terriers. Ataxic members of two of these breeds, the Smooth-Haired Fox Terrier and the Toy Fox Terrier, were homozygous for the mutation, strengthening the likelihood that this genetic defect is indeed the causative mutation for the disease known as "hereditary ataxia" in Fox Terriers and "spinocerebellar ataxia with myokymia, seizures or both" in the Russell group of terriers.


Asunto(s)
Enfermedades de los Perros/genética , Genotipo , Mutación , Canales de Potasio de Rectificación Interna/genética , Degeneraciones Espinocerebelosas/veterinaria , Animales , Perros , Canales de Potasio de Rectificación Interna/metabolismo , Especificidad de la Especie , Degeneraciones Espinocerebelosas/genética
12.
BMC Vet Res ; 10: 960, 2015 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-25551667

RESUMEN

BACKGROUND: The neuronal ceroid lipofuscinoses are heritable lysosomal storage diseases characterized by progressive neurological impairment and the accumulation of autofluorescent storage granules in neurons and other cell types. Various forms of human neuronal ceroid lipofuscinosis have been attributed to mutations in at least 13 different genes. So far, mutations in the canine orthologs of 7 of these genes have been identified in DNA from dogs with neuronal ceroid lipofuscinosis. The identification of new causal mutations could lead to the establishment of canine models to investigate the pathogenesis of the corresponding human neuronal ceroid lipofuscinoses and to evaluate and optimize therapeutic interventions for these fatal human diseases. CASE PRESENTATION: We obtained blood and formalin-fixed paraffin-embedded brain sections from a rescue dog that was reported to be a young adult Chinese Crested. The dog was euthanized at approximately 19 months of age as a consequence of progressive neurological decline that included blindness, anxiety, and cognitive impairment. A diagnosis of neuronal ceroid lipofuscinosis was made based on neurological signs, magnetic resonance imaging of the brain, and fluorescence microscopic and electron microscopic examination of brain sections. We isolated DNA from the blood and used it to generate a whole genome sequence with 33-fold average coverage. Among the 7.2 million potential sequence variants revealed by aligning the sequence reads to the canine genome reference sequence was a homozygous single base pair deletion in the canine ortholog of one of 13 known human NCL genes: MFSD8:c.843delT. MFSD8:c.843delT is predicted to cause a frame shift and premature stop codon resulting in a truncated protein, MFSD8:p.F282Lfs13*, missing its 239 C-terminal amino acids. The MFSD8:c.843delT allele is absent from the whole genome sequences of 101 healthy canids or dogs with other diseases. The genotyping of archived DNA from 1478 Chinese Cresteds did not identify any additional MFSD8:c.843delT homozygotes and found only one heterozygote. CONCLUSION: We conclude that the neurodegenerative disease of the Chinese Crested rescue dog was neuronal ceroid lipofuscinosis and that homozygosity for the MFSD8:c.843delT sequence variant was very likely to be the molecular-genetic cause of the disease.


Asunto(s)
Enfermedades de los Perros/genética , Mutación del Sistema de Lectura/genética , Eliminación de Gen , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , Animales , Cerebelo/patología , Enfermedades de los Perros/patología , Perros/genética , Genoma/genética , Homocigoto , Imagen por Resonancia Magnética/veterinaria , Masculino , Neuroimagen/veterinaria , Lipofuscinosis Ceroideas Neuronales/genética
13.
PLoS One ; 9(10): e109926, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25356766

RESUMEN

Myotonia congenita (MC) is a skeletal muscle channelopathy characterized by inability of the muscle to relax following voluntary contraction. Worldwide population prevalence in humans is 1:100,000. Studies in mice, dogs, humans and goats confirmed myotonia associated with functional defects in chloride channels and mutations in a skeletal muscle chloride channel (CLCN1). CLCN1 encodes for the most abundant chloride channel in the skeletal muscle cell membrane. Five random bred cats from Winnipeg, Canada with MC were examined. All cats had a protruding tongue, limited range of jaw motion and drooling with prominent neck and proximal limb musculature. All cats had blepharospasm upon palpebral reflex testing and a short-strided gait. Electromyograms demonstrated myotonic discharges at a mean frequency of 300 Hz resembling the sound of a 'swarm of bees'. Muscle histopathology showed hypertrophy of all fiber types. Direct sequencing of CLCN1 revealed a mutation disrupting a donor splice site downstream of exon 16 in only the affected cats. In vitro translation of the mutated protein predicted a premature truncation and partial lack of the highly conserved CBS1 (cystathionine ß-synthase) domain critical for ion transport activity and one dimerization domain pivotal in channel formation. Genetic screening of the Winnipeg random bred population of the cats' origin identified carriers of the mutation. A genetic test for population screening is now available and carrier cats from the feral population can be identified.


Asunto(s)
Enfermedades de los Gatos , Membrana Celular , Canales de Cloruro , Músculo Esquelético , Mutación , Miotonía Congénita , Animales , Enfermedades de los Gatos/genética , Enfermedades de los Gatos/metabolismo , Enfermedades de los Gatos/patología , Enfermedades de los Gatos/fisiopatología , Gatos , Membrana Celular/genética , Membrana Celular/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Perros , Electromiografía , Exones , Cabras , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miotonía Congénita/genética , Miotonía Congénita/metabolismo , Miotonía Congénita/mortalidad , Miotonía Congénita/fisiopatología , Miotonía Congénita/veterinaria , Sitios de Empalme de ARN
14.
Mol Genet Metab ; 112(4): 302-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24953404

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are hereditary neurodegenerative diseases characterized by seizures and progressive cognitive decline, motor impairment, and vision loss accompanied by accumulation of autofluorescent lysosomal storage bodies in the central nervous system and elsewhere in the body. Mutations in at least 14 genes underlie the various forms of NCL. One of these genes, CLN8, encodes an intrinsic membrane protein of unknown function that appears to be localized primarily to the endoplasmic reticulum. Most CLN8 mutations in people result in a form of NCL with a late infantile onset and relatively rapid progression. A mixed breed dog with Australian Shepherd and Blue Heeler ancestry developed neurological signs characteristic of NCL starting at about 8months of age. The signs became progressively worse and the dog was euthanized at 21months of age due to seizures of increasing frequency and severity. Postmortem examination of the brain and retinas identified massive accumulations of intracellular autofluorescent inclusions characteristic of the NCLs. Whole genome sequencing of DNA from this dog identified a CLN8:c.585G>A transition that predicts a CLN8:p.Trp195* nonsense mutation. This mutation appears to be rare in both ancestral breeds. All of our 133 archived DNA samples from Blue Heelers, and 1481 of our 1488 archived Australian Shepherd DNA samples tested homozygous for the reference CLN8:c.585G allele. Four of the Australian Shepherd samples tested heterozygous and 3 tested homozygous for the mutant CLN8:c.585A allele. All 3 dogs homozygous for the A allele exhibited clinical signs of NCL and in 2 of them NCL was confirmed by postmortem evaluation of brain tissue. The occurrence of confirmed NCL in 3 of 4 CLN8:c.585A homozygous dogs, plus the occurrence of clinical signs consistent with NCL in the fourth homozygote strongly suggests that this rare truncating mutation causes NCL. Identification of this NCL-causing mutation provides the opportunity for identifying dogs that can be used to establish a canine model for the CLN8 disease (also known as late infantile variant or late infantile CLN8 disease).


Asunto(s)
Cruzamiento , Codón sin Sentido/genética , Genoma/genética , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , Linaje , Animales , Secuencia de Bases , Perros , Resultado Fatal , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Imagen por Resonancia Magnética , Microscopía Fluorescente , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Células de Purkinje/patología , Células de Purkinje/ultraestructura
15.
PLoS Genet ; 10(2): e1003991, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516392

RESUMEN

Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia.


Asunto(s)
Autofagia/genética , Enfermedades de los Perros/genética , Estudio de Asociación del Genoma Completo , Degeneraciones Espinocerebelosas/genética , Proteínas de Unión al GTP rab/genética , Animales , Corteza Cerebelosa/patología , Mapeo Cromosómico , Enfermedades de los Perros/patología , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Mutación , Polimorfismo de Nucleótido Simple , Degeneraciones Espinocerebelosas/etiología
17.
Mol Genet Metab ; 108(1): 70-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23266199

RESUMEN

GM2 gangliosidosis is a fatal lysosomal storage disease caused by a deficiency of ß-hexosaminidase (EC 3.2.1.52). There are two major isoforms of the enzyme: hexosaminidase A composed of an α and a ß subunit (encoded by HEXA and HEXB genes, respectively); and, hexosaminidase B composed of two ß subunits. Hexosaminidase A requires an activator protein encoded by GM2A to catabolize GM2 ganglioside, but even in the absence of the activator protein, it can hydrolyze the synthetic substrates commonly used to assess enzyme activity. GM2 gangliosidosis has been reported in Japanese Chin dogs, and we identified the disease in two related Japanese Chin dogs based on clinical signs, histopathology and elevated brain GM2 gangliosides. As in previous reports, we found normal or elevated hexosaminidase activity when measured with the synthetic substrates. This suggested that the canine disease is analogous to human AB variant of G(M2) gangliosidosis, which results from mutations in GM2A. However, only common neutral single nucleotide polymorphisms were found upon sequence analysis of the canine ortholog of GM2A from the affected Japanese Chins. When the same DNA samples were used to sequence HEXA, we identified a homozygous HEXA:c967G>A transition which predicts a p.E323K substitution. The glutamyl moiety at 323 is known to make an essential contribution to the active site of hexosaminidase A, and none of the 128 normal Japanese Chins and 92 normal dogs of other breeds that we tested was homozygous for HEXA:c967A. Thus it appears that the HEXA:c967G>A transition is responsible for the GM2 gangliosidosis in Japanese Chins.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades de los Perros/genética , Gangliosidosis GM2/genética , Hexosaminidasa B/genética , Mutación Missense , Animales , Secuencia de Bases , Sondas de ADN , Perros , Femenino , Masculino , Linaje , Reacción en Cadena de la Polimerasa
18.
BMC Vet Res ; 8: 124, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22834903

RESUMEN

BACKGROUND: L-2-hydroxyglutaric aciduria is a metabolic repair deficiency characterized by elevated levels of L-2-hydroxyglutaric acid in urine, blood and cerebrospinal fluid. Neurological signs associated with the disease in humans and dogs include seizures, ataxia and dementia. CASE PRESENTATION: Here we describe an 8 month old Yorkshire terrier that presented with episodes of hyperactivity and aggressive behavior. Between episodes, the dog's behavior and neurologic examinations were normal. A T2 weighted MRI of the brain showed diffuse grey matter hyperintensity and a urine metabolite screen showed elevated 2-hydroxyglutaric acid. We sequenced all 10 exons and intron-exon borders of L2HGDH from the affected dog and identified a homozygous A to G transition in the initiator methionine codon. The first inframe methionine is at p.M183 which is past the mitochondrial targeting domain of the protein. Initiation of translation at p.M183 would encode an N-terminal truncated protein unlikely to be functional. CONCLUSIONS: We have identified a mutation in the initiation codon of L2HGDH that is likely to result in a non-functional gene. The Yorkshire terrier could serve as an animal model to understand the pathogenesis of L-2-hydroxyglutaric aciduria and to evaluate potential therapies.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Encefalopatías Metabólicas Innatas/veterinaria , Enfermedades de los Perros/genética , Oxidorreductasas de Alcohol/genética , Animales , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/metabolismo , Enfermedades de los Perros/patología , Perros , Regulación Enzimológica de la Expresión Génica , Masculino , Mutación
19.
J Neurol Sci ; 318(1-2): 55-64, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22542607

RESUMEN

Canine degenerative myelopathy (DM) is an adult-onset, fatal neurodegenerative disease with many similarities to an upper-motor-neuron-onset form of human amyotrophic lateral sclerosis (ALS), that results from mutations in the superoxide dismutase (SOD1) gene. DM occurs in many dog breeds, including the Pembroke Welsh Corgi and Boxer. The initial upper motor neuron degeneration produces spastic paraparesis and affected dogs develop general proprioceptive ataxia in the pelvic limbs. Dog owners usually elect euthanasia when their dog becomes paraplegic. When euthanasia is delayed, lower motor neuron signs including ascending tetraparesis, flaccid paralysis and widespread muscle atrophy emerge. For this study, muscle and peripheral nerve specimens were evaluated at varying disease stages from DM-affected Pembroke Welsh Corgis and Boxers that were homozygous for the SOD1 mutation and had spinal cord histopathology consistent with DM. Comparisons were made with age- and breed-matched control dogs. Here we provide evidence that Pembroke Welsh Corgis and Boxers with chronic DM develop muscle atrophy consistent with denervation, peripheral nerve pathology consistent with an axonopathy, and to a lesser degree demyelination. Canine DM has been proposed as a potential spontaneous animal disease model of human ALS. The results of this study provide further support that canine DM recapitulates one form of the corresponding human disorder and should serve as a valuable animal model to develop therapeutic strategies.


Asunto(s)
Progresión de la Enfermedad , Enfermedades de los Perros/genética , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Mutación Missense/genética , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades de la Médula Espinal/genética , Superóxido Dismutasa/genética , Animales , Modelos Animales de Enfermedad , Enfermedades de los Perros/enzimología , Perros , Predisposición Genética a la Enfermedad/genética , Trastornos Heredodegenerativos del Sistema Nervioso/enzimología , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Homocigoto , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades de la Médula Espinal/enzimología , Enfermedades de la Médula Espinal/patología , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa-1
20.
Neurobiol Dis ; 42(3): 468-74, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21362476

RESUMEN

A recessive, adult-onset neuronal ceroid-lipofuscinosis (NCL) occurs in Tibetan terriers. A genome-wide association study restricted this NCL locus to a 1.3Mb region of canine chromosome 2 which contains canine ATP13A2. NCL-affected dogs were homozygous for a single-base deletion in ATP13A2, predicted to produce a frameshift and premature termination codon. Homozygous truncating mutations in human ATP13A2 have been shown by others to cause Kufor-Rakeb syndrome (KRS), a rare neurodegenerative disease. These findings suggest that KRS is also an NCL, although analysis of KRS brain tissue will be needed to confirm this prediction. Generalized brain atrophy, behavioral changes, and cognitive decline occur in both people and dogs with ATP13A2 mutations; however, other clinical features differ between the species. For example, Tibetan terriers with NCL develop cerebellar ataxia not reported in KRS patients and KRS patients exhibit parkinsonism and pyramidal dysfunction not observed in affected Tibetan terriers. To see if ATP13A2 mutations could be responsible for some cases of human adult-onset NCL (Kufs disease), we resequenced ATP13A2 from 28 Kufs disease patients. None of these patients had ATP13A2 sequence variants likely to be causal for their disease, suggesting that mutations in this gene are not common causes of Kufs disease.


Asunto(s)
Encéfalo/patología , Enfermedades de los Perros/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , ATPasas de Translocación de Protón/genética , Animales , Enfermedades de los Perros/patología , Perros , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...