Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
FASEB J ; 37(8): e23115, 2023 08.
Article En | MEDLINE | ID: mdl-37490006

Patients with type 2 diabetes often develop the microvascular complications of diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN), which decrease quality of life and increase mortality. Unfortunately, treatment options for DKD and DPN are limited. Lifestyle interventions, such as changes to diet, have been proposed as non-pharmacological treatment options for preventing or improving DKD and DPN. However, there are no reported studies simultaneously evaluating the therapeutic efficacy of varying dietary interventions in a type 2 diabetes mouse model of both DKD and DPN. Therefore, we compared the efficacy of a 12-week regimen of three dietary interventions, low carbohydrate, caloric restriction, and alternate day fasting, for preventing complications in a db/db type 2 diabetes mouse model by performing metabolic, DKD, and DPN phenotyping. All three dietary interventions promoted weight loss, ameliorated glycemic status, and improved DKD, but did not impact percent fat mass and DPN. Multiple regression analysis identified a negative correlation between fat mass and motor nerve conduction velocity. Collectively, our data indicate that these three dietary interventions improved weight and glycemic status and alleviated DKD but not DPN. Moreover, diets that decrease fat mass may be a promising non-pharmacological approach to improve DPN in type 2 diabetes given the negative correlation between fat mass and motor nerve conduction velocity.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Mice , Quality of Life , Caloric Restriction , Fasting , Mice, Inbred Strains
2.
Front Physiol ; 13: 921942, 2022.
Article En | MEDLINE | ID: mdl-36072849

As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.

3.
Diabetes Ther ; 13(3): 389-421, 2022 Mar.
Article En | MEDLINE | ID: mdl-35175551

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are incretin-mimetic agents that are effective adjuncts in the treatment of diabetes. This class of medications is also associated with promoting weight loss and a low risk of hypoglycemia, and some have been shown to be associated with a significant reduction of major cardiovascular events. Mounting evidence suggests that GLP-1 RAs have benefits beyond reducing blood glucose that include improving kidney function in people living with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD), a common microvascular complication of T2DM. Several large clinical studies, the majority of which are cardiovascular outcome trials, indicate that GLP-1 RA therapy is safe and tolerable for people living with T2DM and compromised renal function, and also suggest that GLP-1 RAs may have renoprotective properties. Although evidence from clinical trials has shown GLP-1 RAs to be safe and efficacious in people living with T2DM and renal impairment, their use is uncommon in this patient population. With continuing developments in the field of GLP-1 RA therapy, it is important for physicians to understand the benefits and practical use of GLP-1 RAs, as well as the clinical evidence, in order to achieve positive patient outcomes. Here, we review evidence on GLP-1 RA use in people living with T2DM and CKD and summarize renal outcomes from clinical studies. We provide practical considerations for GLP-1 RA use to provide an added benefit to guide treatment in this high-risk patient population.


Type 2 diabetes mellitus (T2DM) is a common disorder characterized by insulin resistance and dysfunction of insulin-producing beta cells of the pancreas. People living with T2DM have an increased risk of developing complications, including chronic kidney disease (CKD), which itself is associated with increased mortality. Both the American Diabetes Association and Kidney Disease Improving Global Outcomes organization provide updated pharmacological recommendations for treating T2DM in people with CKD that include the use of sodium-glucose co-transporter-2 inhibitors (SGLT2i) or glucagon-like peptide-1 receptor agonists (GLP-1 RAs). GLP-1 RAs are effective and safe treatments for controlling blood sugar levels and reducing body weight, and evidence from large clinical trials also suggests that GLP-1 RAs may be renoprotective. Despite the benefits of GLP-1 RAs, they are not commonly prescribed in people living with T2DM and CKD. Healthcare practitioners need to be aware of the most recent information so that they can make informed decisions when selecting treatment options. The objective of this review is to summarize the main renal outcomes from clinical studies while providing practical guidance on the use of GLP-1 RAs.

4.
J Transl Sci ; 7(1)2021 Feb.
Article En | MEDLINE | ID: mdl-33868719

Diabetes is a global healthcare problem associated with enormous healthcare and personal costs. Despite glucose lowering agents that control glycaemia, both type 1 (T1D) and type (T2D) diabetes patients often develop microvascular complications that increase morbidity and mortality. Current interventions rely on careful glycemic control and healthy lifestyle choices, but these are ineffective at reversing or completely preventing the major microvascular complications, diabetic peripheral neuropathy (DPN), diabetic retinopathy (DR), and diabetic kidney disease (DKD). Minocycline, a tetracycline antibiotic with anti-inflammatory and anti-apoptotic properties, has been proposed as a protective agent in diabetes. However, there are no reported studies evaluating the therapeutic efficacy of minocycline in T1D and T2D models for all microvascular complications (DPN, DR, and DKD). Therefore, we performed metabolic profiling in streptozotocin-induced T1D and db/db T2D models and compared the efficacy of minocycline in preventing complications to that of insulin and pioglitazone in both models. Minocycline partially ameliorated DR and DKD in T1D and T2D animals, but was less effective than insulin or pioglitazone, and failed to improve DPN in either model. These results suggest that minocycline is unlikely to improve outcomes beyond that achieved with current available therapies in patients with T1D or T2D associated microvascular complications.

5.
Dis Model Mech ; 14(4)2021 04 01.
Article En | MEDLINE | ID: mdl-33692086

Peripheral neuropathy (PN) is a common complication of prediabetes and diabetes and is an increasing problem worldwide. Existing PN treatments rely solely on glycemic control, which is effective in type 1 but not type 2 diabetes. Sex differences in response to anti-diabetic drugs further complicate the identification of effective PN therapies. Preclinical research has been primarily carried out in males, highlighting the need for increased sex consideration in PN models. We previously reported PN sex dimorphism in obese leptin-deficient ob/ob mice. This genetic model is inherently limited, however, owing to leptin's role in metabolism. Therefore, the current study goal was to examine PN and insulin resistance in male and female C57BL6/J mice fed a high-fat diet (HFD), an established murine model of human prediabetes lacking genetic mutations. HFD mice of both sexes underwent longitudinal phenotyping and exhibited expected metabolic and PN dysfunction compared to standard diet (SD)-fed animals. Hindpaw thermal latencies to heat were shorter in HFD females versus HFD males, as well as SD females versus males. Compared to HFD males, female HFD mice exhibited delayed insulin resistance, yet still developed the same trajectory of nerve conduction deficits and intraepidermal nerve fiber density loss. Subtle differences in adipokine levels were also noted by sex and obesity status. Collectively, our results indicate that although females retain early insulin sensitivity upon HFD challenge, this does not protect them from developing the same degree of PN as their male counterparts. This article has an associated First Person interview with the first author of the paper.


Diabetic Neuropathies/pathology , Diet, High-Fat , Insulin Resistance , Prediabetic State/pathology , Sex Characteristics , Adipokines/blood , Animals , Disease Models, Animal , Female , Lipids/blood , Male , Mice, Inbred C57BL , Phenotype , Prediabetic State/blood , Temperature
6.
Biology (Basel) ; 9(11)2020 Oct 22.
Article En | MEDLINE | ID: mdl-33105667

Microvascular complications account for the significant morbidity associated with diabetes. Despite tight glycemic control, disease risk remains especially in type 2 diabetes (T2D) patients and no therapy fully prevents nerve, retinal, or renal damage in type 1 diabetes (T1D) or T2D. Therefore, new antidiabetic drug classes are being evaluated for the treatment of microvascular complications. We investigated the effect of empagliflozin (EMPA), an inhibitor of the sodium/glucose cotransporter 2 (SGLT2), on diabetic neuropathy (DPN), retinopathy (DR), and kidney disease (DKD) in streptozotocin-induced T1D and db/db T2D mouse models. EMPA lowered blood glycemia in T1D and T2D models. However, it did not ameliorate any microvascular complications in the T2D model, which was unexpected, given the protective effect of SGLT2 inhibitors on DKD progression in T2D subjects. Although EMPA did not improve DKD in the T1D model, it had a potential modest effect on DR measures and favorably impacted DPN as well as systemic oxidative stress. These results support the concept that glucose-centric treatments are more effective for DPN in T1D versus T2D. This is the first study that provides an evaluation of EMPA treatment on all microvascular complications in a side-by-side comparison in T1D and T2D models.

7.
Dis Model Mech ; 13(2)2020 01 24.
Article En | MEDLINE | ID: mdl-31822493

Peripheral neuropathy (PN) is a complication of prediabetes and type 2 diabetes (T2D). Increasing evidence suggests that factors besides hyperglycaemia contribute to PN development, including dyslipidaemia. The objective of this study was to determine differential lipid classes and altered gene expression profiles in prediabetes and T2D mouse models in order to identify the dysregulated pathways in PN. Here, we used high-fat diet (HFD)-induced prediabetes and HFD/streptozotocin (STZ)-induced T2D mouse models that develop PN. These models were compared to HFD and HFD-STZ mice that were subjected to dietary reversal. Both untargeted and targeted lipidomic profiling, and gene expression profiling were performed on sciatic nerves. Lipidomic and transcriptomic profiles were then integrated using complex correlation analyses, and biological meaning was inferred from known lipid-gene interactions in the literature. We found an increase in triglycerides (TGs) containing saturated fatty acids. In parallel, transcriptomic analysis confirmed the dysregulation of lipid pathways. Integration of lipidomic and transcriptomic analyses identified an increase in diacylglycerol acyltransferase 2 (DGAT2), the enzyme required for the last and committed step in TG synthesis. Increased DGAT2 expression was present not only in the murine models but also in sural nerve biopsies from hyperlipidaemic diabetic patients with PN. Collectively, these findings support the hypothesis that abnormal nerve-lipid signalling is an important factor in peripheral nerve dysfunction in both prediabetes and T2D.This article has an associated First Person interview with the joint first authors of the paper.


Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression Profiling , Lipidomics , Nerve Tissue/metabolism , Prediabetic State/genetics , Prediabetic State/metabolism , Triglycerides/metabolism , Animals , Databases, Genetic , Diet, High-Fat , Disease Models, Animal , Fatty Acids/metabolism , Gene Regulatory Networks , Humans , Hyperlipidemias/genetics , Lipid Metabolism/genetics , Male , Mice, Inbred C57BL , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Streptozocin
8.
Dis Model Mech ; 13(2)2019 11 15.
Article En | MEDLINE | ID: mdl-31597644

Amyotrophic lateral sclerosis (ALS) is a terminal neurodegenerative disease. Genetic predisposition, epigenetic changes, aging and accumulated life-long environmental exposures are known ALS risk factors. The complex and dynamic interplay between these pathological influences plays a role in disease onset and progression. Recently, the gut microbiome has also been implicated in ALS development. In addition, immune cell populations are differentially expanded and activated in ALS compared to healthy individuals. However, the temporal evolution of both the intestinal flora and the immune system relative to symptom onset in ALS is presently not fully understood. To better elucidate the timeline of the various potential pathological factors, we performed a longitudinal study to simultaneously assess the gut microbiome, immunophenotype and changes in ileum and brain epigenetic marks relative to motor behavior and muscle atrophy in the mutant superoxide dismutase 1 (SOD1G93A) familial ALS mouse model. We identified alterations in the gut microbial environment early in the life of SOD1G93A animals followed by motor dysfunction and muscle atrophy, and immune cell expansion and activation, particularly in the spinal cord. Global brain cytosine hydroxymethylation was also altered in SOD1G93A animals at disease end-stage compared to control mice. Correlation analysis confirmed interrelationships with the microbiome and immune system. This study serves as a starting point to more deeply comprehend the influence of gut microorganisms and the immune system on ALS onset and progression. Greater insight may help pinpoint novel biomarkers and therapeutic interventions to improve diagnosis and treatment for ALS patients.This article has an associated First Person interview with the joint first authors of the paper.


Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/microbiology , Disease Progression , Epigenome , Gastrointestinal Microbiome/genetics , Immune System/microbiology , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Bacteria/classification , Brain/metabolism , Brain/pathology , Feces/microbiology , Female , Inflammation/pathology , Leukocytes/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/metabolism , Phenotype , Phylogeny , Superoxide Dismutase-1/genetics , Time Factors
9.
Sci Rep ; 9(1): 881, 2019 01 29.
Article En | MEDLINE | ID: mdl-30696927

Diabetic peripheral neuropathy (DPN), diabetic kidney disease (DKD), and diabetic retinopathy (DR) contribute to significant morbidity and mortality in diabetes patients. The incidence of these complications is increasing with the diabetes epidemic, and current therapies minimally impact their pathogenesis in type 2 diabetes (T2D). Improved mechanistic understanding of each of the diabetic complications is needed in order to develop disease-modifying treatments for patients. We recently identified fundamental differences in mitochondrial responses of peripheral nerve, kidney, and retinal tissues to T2D in BKS-db/db mice. However, whether these mitochondrial adaptations are the cause or consequence of tissue dysfunction remains unclear. In the current study BKS-db/db mice were treated with the mitochondrial uncoupler, niclosamide ethanolamine (NEN), to determine the effects of mitochondrial uncoupling therapy on T2D, and the pathogenesis of DPN, DKD and DR. Here we report that NEN treatment from 6-24 wk of age had little effect on the development of T2D and diabetic complications. Our data suggest that globally targeting mitochondria with an uncoupling agent is unlikely to provide therapeutic benefit for DPN, DKD, or DR in T2D. These data also highlight the need for further insights into the role of tissue-specific metabolic reprogramming in the pathogenesis of diabetic complications.


Diabetes Mellitus, Type 2/metabolism , Mitochondrial Uncoupling Proteins/metabolism , Animals , Diabetic Nephropathies/metabolism , Diabetic Neuropathies/metabolism , Diabetic Retinopathy/metabolism , Disease Models, Animal , Ethanolamine/pharmacology , Kidney/metabolism , Male , Mice , Mitochondria/metabolism , Mitochondrial Uncoupling Proteins/physiology , Niclosamide/pharmacology , Uncoupling Agents/pharmacology
10.
Dis Model Mech ; 11(12)2018 12 18.
Article En | MEDLINE | ID: mdl-30446513

Peripheral neuropathy (neuropathy) is a common complication of obesity and type 2 diabetes in children and adolescents. To model this complication in mice, 5-week-old male C57BL/6J mice were fed a high-fat diet to induce diet-induced obesity (DIO), a model of prediabetes, and a cohort of these animals was injected with low-dose streptozotocin (STZ) at 12 weeks of age to induce hyperglycemia and type 2 diabetes. Neuropathy assessments at 16, 24 and 36 weeks demonstrated that DIO and DIO-STZ mice displayed decreased motor and sensory nerve conduction velocities as early as 16 weeks, hypoalgesia by 24 weeks and cutaneous nerve fiber loss by 36 weeks, relative to control mice fed a standard diet. Interestingly, neuropathy severity was similar in DIO and DIO-STZ mice at all time points despite significantly higher fasting glucose levels in the DIO-STZ mice. These mouse models provide critical tools to better understand the underlying pathogenesis of prediabetic and diabetic neuropathy from youth to adulthood, and support the idea that hyperglycemia alone does not drive early neuropathy.This article has an associated First Person interview with the first author of the paper.


Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/pathology , Prediabetic State/pathology , Animals , Diet, High-Fat , Disease Models, Animal , Dyslipidemias/pathology , Glucose Intolerance/pathology , Glucose Tolerance Test , Male , Mice, Inbred C57BL , Obesity/pathology , Phenotype , Streptozocin
11.
Exp Neurol ; 305: 33-43, 2018 07.
Article En | MEDLINE | ID: mdl-29550371

Diabetic peripheral neuropathy is the most common complication of diabetes and a source of considerable morbidity. Numerous molecular pathways are linked to neuropathic progression, but it is unclear whether these pathways are altered throughout the course of disease. Moreover, the methods by which these molecular pathways are analyzed can produce significantly different results; as such it is often unclear whether previously published pathways are viable targets for novel therapeutic approaches. In the current study we examine changes in gene expression patterns in the sciatic nerve (SCN) and dorsal root ganglia (DRG) of db/db diabetic mice at 8, 16, and 24 weeks of age using microarray analysis. Following the collection and verification of gene expression data, we utilized both self-organizing map (SOM) analysis and differentially expressed gene (DEG) analysis to detect pathways that were altered at all time points. Though there was some variability between SOM and DEG analyses, we consistently detected altered immune pathways in both the SCN and DRG over the course of disease. To support these results, we further used multiplex analysis to assess protein changes in the SCN of diabetic mice; we found that multiple immune molecules were upregulated at both early and later stages of disease. In particular, we found that matrix metalloproteinase-12 was highly upregulated in microarray and multiplex data sets suggesting it may play a role in disease progression.


Diabetes Mellitus, Type 2/metabolism , Diabetic Neuropathies/metabolism , Disease Progression , Gene Regulatory Networks/physiology , Inflammation Mediators/metabolism , Transcription, Genetic/physiology , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Diabetic Neuropathies/genetics , Diabetic Neuropathies/immunology , Disease Models, Animal , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic
13.
Lancet Neurol ; 16(6): 465-477, 2017 06.
Article En | MEDLINE | ID: mdl-28504110

The high prevalence of obesity is associated with an enormous medical, social, and economic burden. The metabolic dysfunction, dyslipidaemia, and inflammation caused by obesity contribute to the development of a wide variety of disorders and effects on the nervous system. In the CNS, mild cognitive impairment can be attributed to obesity-induced alterations in hippocampal structure and function in some patients. Likewise, compromised hypothalamic function and subsequent defects in maintaining whole-body energy balance might be early events that contribute to weight gain and obesity development. In the peripheral nervous system, obesity-driven alterations in the autonomic nervous system prompt imbalances in sympathetic-parasympathetic activity, while alterations in the sensory-somatic nervous system underlie peripheral polyneuropathy, a common complication of diabetes. Pharmacotherapy and bariatric surgery are promising interventions for people with obesity that can improve neurological function. However, lifestyle interventions via dietary changes and exercise are the preferred approach to combat obesity and reduce its associated health risks.


Autonomic Nervous System Diseases/etiology , Central Nervous System Diseases/etiology , Cognitive Dysfunction/etiology , Obesity/complications , Peripheral Nervous System Diseases/etiology , Humans
14.
Dis Model Mech ; 10(6): 717-725, 2017 06 01.
Article En | MEDLINE | ID: mdl-28381495

Patients with metabolic syndrome, which is defined as obesity, dyslipidemia, hypertension and impaired glucose tolerance (IGT), can develop the same macro- and microvascular complications as patients with type 2 diabetes, including peripheral neuropathy. In type 2 diabetes, glycemic control has little effect on the development and progression of peripheral neuropathy, suggesting that other metabolic syndrome components may contribute to the presence of neuropathy. A parallel phenomenon is observed in patients with prediabetes and metabolic syndrome, where improvement in weight and dyslipidemia more closely correlates with restoration of nerve function than improvement in glycemic status. The goal of the current study was to develop a murine model that resembles the human condition. We examined longitudinal parameters of metabolic syndrome and neuropathy development in six mouse strains/genotypes (BKS-wt, BKS-Leprdb/+ , B6-wt, B6-Leprdb/+ , BTBR-wt, and BTBR-Lepob/+ ) fed a 54% high-fat diet (HFD; from lard). All mice fed a HFD developed large-fiber neuropathy and IGT. Changes appeared early and consistently in B6-wt mice, and paralleled the onset of neuropathy. At 36 weeks, B6-wt mice displayed all components of the metabolic syndrome, including obesity, IGT, hyperinsulinemia, dyslipidemia and oxidized low density lipoproteins (oxLDLs). Dietary reversal, whereby B6-wt mice fed a HFD from 4-20 weeks of age were switched to standard chow for 4 weeks, completely normalized neuropathy, promoted weight loss, improved insulin sensitivity, and restored LDL cholesterol and oxLDL by 50% compared with levels in HFD control mice. This dietary reversal model provides the basis for mechanistic studies investigating peripheral nerve damage in the setting of metabolic syndrome, and ultimately the development of mechanism-based therapies for neuropathy.


Diabetic Neuropathies/diet therapy , Metabolic Syndrome/diet therapy , Prediabetic State/diet therapy , Adipocytes/pathology , Adipose Tissue, White/pathology , Animals , Body Weight , Cholesterol/blood , Diabetic Neuropathies/blood , Diet, High-Fat , Disease Models, Animal , Epididymis/pathology , Feeding Behavior , Glucose Tolerance Test , Insulin Resistance , Lipoproteins, LDL/blood , Male , Metabolic Syndrome/blood , Mice, Inbred C57BL , Nerve Fibers/pathology , Phenotype , Prediabetic State/blood
15.
Diabetes Obes Metab ; 19(10): 1468-1472, 2017 10.
Article En | MEDLINE | ID: mdl-28332276

Diabetic peripheral neuropathy (DPN) and diabetic kidney disease (DKD) are common diabetic complications with limited treatment options. Experimental studies show that targeting inflammation using chemokine receptor (CCR) antagonists ameliorates DKD, presumably by reducing macrophage accumulation or activation. As inflammation is implicated in DPN development, we assessed whether CCR2 and CCR5 antagonism could also benefit DPN. Five-week-old ob/ob mice were fed a diet containing MK-0812, a dual CCR2-CCR5 receptor antagonist, for 8 weeks; DPN, DKD and metabolic phenotyping were then performed to determine the effect of CCR inhibition. Although MK-0812 reduced macrophage accumulation in adipose tissue, the treatment had largely no effect on metabolic parameters, nerve function or kidney disease in ob/ob mice. These results conflict with published data that demonstrate a benefit of CCR antagonists for DKD and hyperglycaemia. We conclude that CCR signaling blockade is ineffective in ob/ob mice and suspect that this is explained by the severe hyperglycaemia found in this model. It remains to be determined whether MK-0812 treatment, alone or in combination with improved glycaemic control, is useful in preventing diabetic complications in alternate animal models.


Adipose Tissue/drug effects , Anti-Inflammatory Agents/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Angiopathies/drug therapy , Inflammation/drug therapy , Obesity/drug therapy , Adipose Tissue/pathology , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Diabetic Neuropathies/drug therapy , Inflammation/complications , Male , Mice , Mice, Obese , Mice, Transgenic , Obesity/complications , Panniculitis/complications , Panniculitis/drug therapy , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR5/metabolism
16.
Diabetologia ; 59(6): 1297-306, 2016 06.
Article En | MEDLINE | ID: mdl-27000313

AIMS/HYPOTHESIS: Diabetic peripheral neuropathy (DPN) and diabetic nephropathy (DN) are two common microvascular complications of type 1 and type 2 diabetes mellitus that are associated with a high degree of morbidity. In this study, using a variety of systems biology approaches, our aim was to identify common and distinct mechanisms underlying the pathogenesis of these two complications. METHODS: Our previously published transcriptomic datasets of peripheral nerve and kidney tissue, derived from murine models of type 1 diabetes (streptozotocin-injected mice) and type 2 diabetes (BKS-db/db mice) and their respective controls, were collected and processed using a unified analysis pipeline so that comparisons could be made. In addition to looking at genes and pathways dysregulated in individual datasets, pairwise comparisons across diabetes type and tissue type were performed at both gene and transcriptional network levels to complete our proposed objective. RESULTS: Gene-level analysis identified exceptionally high levels of concordant gene expression in DN (94% of 2,433 genes), but not in DPN (54% of 1,558 genes), between type 1 diabetes and type 2 diabetes. These results suggest that common pathogenic mechanisms exist in DN across diabetes type, while in DPN the mechanisms are more distinct. When these dysregulated genes were examined at the transcriptional network level, we found that the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway was significantly dysregulated in both complications, irrespective of diabetes type. CONCLUSIONS/INTERPRETATION: Using a systems biology approach, our findings suggest that common pathogenic mechanisms exist in DN across diabetes type, while in DPN the mechanisms are more distinct. We also found that JAK-STAT signalling is commonly dysregulated among all datasets. Using such approaches, further investigation is warranted to determine whether the same changes are observed in patients with diabetic complications.


Diabetic Nephropathies/genetics , Diabetic Neuropathies/genetics , Transcriptome/genetics , Animals , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Disease Models, Animal , Gene Regulatory Networks/genetics , Janus Kinases/genetics , Mice , STAT Transcription Factors/genetics
17.
J Diabetes Complications ; 30(1): 30-7, 2016.
Article En | MEDLINE | ID: mdl-26525588

AIMS: To identify a female mouse model of diabetic peripheral neuropathy (DPN), we characterized DPN in female BTBR ob/ob mice and compared their phenotype to non-diabetic and gender-matched controls. We also identified dysregulated genes and pathways in sciatic nerve (SCN) and dorsal root ganglia (DRG) of female BTBR ob/ob mice to determine potential DPN mechanisms. METHODS: Terminal neuropathy phenotyping consisted of examining latency to heat stimuli, sciatic motor and sural sensory nerve conduction velocities (NCV), and intraepidermal nerve fiber (IENF) density. For gene expression profiling, DRG and SCN were dissected, RNA was isolated and processed using microarray technology and differentially expressed genes were identified. RESULTS: Similar motor and sensory NCV deficits were observed in male and female BTBR ob/ob mice at study termination; however, IENF density was greater in female ob/ob mice than their male counterparts. Male and female ob/ob mice exhibited similar weight gain, hyperglycemia, and hyperinsulinemia compared to non-diabetic controls, although triglycerides were elevated more so in males than in females. Transcriptional profiling of nerve tissue from female mice identified dysregulation of pathways related to inflammation. CONCLUSIONS: Similar to males, female BTBR ob/ob mice display robust DPN, and pathways related to inflammation are dysregulated in peripheral nerve.


Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/metabolism , Ganglia, Spinal/metabolism , Gene Expression Regulation , Nerve Tissue Proteins/metabolism , Obesity/complications , Sciatic Nerve/metabolism , Animals , Diabetic Neuropathies/complications , Diabetic Neuropathies/physiopathology , Epidermis/innervation , Female , Ganglia, Spinal/physiopathology , Gene Expression Profiling , Hot Temperature/adverse effects , Hypertriglyceridemia/complications , Male , Mice, Mutant Strains , Mice, Obese , Motor Skills , Nerve Tissue Proteins/genetics , Neural Conduction , RNA, Messenger/metabolism , Reaction Time , Sciatic Nerve/physiopathology , Sensory Gating , Sex Characteristics
18.
Neurobiol Dis ; 73: 348-55, 2015 Jan.
Article En | MEDLINE | ID: mdl-25447227

Given the lack of treatments for diabetic neuropathy (DN), a common diabetic complication, accurate disease models are necessary. Characterization of the leptin-deficient BTBR ob/ob mouse, a type 2 diabetes model, demonstrated that the mice develop robust diabetes coincident with severe neuropathic features, including nerve conduction deficits and intraepidermal nerve fiber loss by 9 and 13 weeks of age, respectively, supporting its use as a DN model. To gain insight into DN mechanisms, we performed microarray analysis on sciatic nerve from BTBR ob/ob mice, identifying 1503 and 642 differentially expressed genes associated with diabetes at 5 and 13 weeks, respectively. Further analyses identified overrepresentation of inflammation and immune-related functions in BTBR ob/ob mice, which interestingly were more highly represented at 5 weeks, an observation that may suggest a contributory role in DN onset. To complement the gene expression analysis, we demonstrated that protein levels of select cytokines were significantly upregulated at 13 weeks in BTBR ob/ob mouse sciatic nerve. Furthermore, we compared our array data to that from an established DN model, the C57BKS db/db mouse, which reflected a common dysregulation of inflammatory and immune-related pathways. Together, our data demonstrate that BTBR ob/ob mice develop rapid and robust DN associated with dysregulated inflammation and immune-related processes.


Cytokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Neuropathies/metabolism , Gene Expression Profiling , Inflammation/metabolism , Sciatic Nerve/metabolism , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Phenotype
19.
ILAR J ; 54(3): 259-72, 2014.
Article En | MEDLINE | ID: mdl-24615439

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies.


Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Neuropathies/physiopathology , Disease Models, Animal , Dyslipidemias/physiopathology , Animals , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/etiology , Dyslipidemias/genetics , Insulin Resistance/physiology , Mice
20.
Antioxid Redox Signal ; 21(4): 621-33, 2014 Aug 01.
Article En | MEDLINE | ID: mdl-24382087

SIGNIFICANCE: Diabetes and other diseases that comprise the metabolic syndrome have reached epidemic proportions. Diabetic peripheral neuropathy (DPN) is the most prevalent complication of diabetes, affecting ~50% of diabetic patients. Characterized by chronic pain or loss of sensation, recurrent foot ulcerations, and risk for amputation, DPN is associated with significant morbidity and mortality. Mechanisms underlying DPN pathogenesis are complex and not well understood, and no effective treatments are available. Thus, an improved understanding of DPN pathogenesis is critical for the development of successful therapeutic options. RECENT ADVANCES: Recent research implicates endoplasmic reticulum (ER) stress as a novel mechanism in the onset and progression of DPN. ER stress activates the unfolded protein response (UPR), a well-orchestrated signaling cascade responsible for relieving stress and restoring normal ER function. CRITICAL ISSUES: During times of extreme or chronic stress, such as that associated with diabetes, the UPR may be insufficient to alleviate ER stress, resulting in apoptosis. Here, we discuss the potential role of ER stress in DPN, as well as evidence demonstrating how ER stress intersects with pathways involved in DPN development and progression. An improved understanding of how ER stress contributes to peripheral nerve dysfunction in diabetes will provide important insight into DPN pathogenesis. FUTURE DIRECTIONS: Future studies aimed at gaining the necessary insight into ER stress in DPN pathogenesis will ultimately facilitate the development of novel therapies.


Diabetic Neuropathies/etiology , Diabetic Neuropathies/metabolism , Endoplasmic Reticulum Stress , Animals , Diabetic Neuropathies/drug therapy , Humans , Signal Transduction , Unfolded Protein Response
...