Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Eur J Cancer ; 208: 114204, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029295

RESUMEN

BACKGROUND: Sotorasib 960 mg once daily is approved to treat KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib exhibits non-dose proportional pharmacokinetics and clinical responses at lower doses; therefore, we evaluated the efficacy and safety of sotorasib 960 mg and 240 mg. METHODS: In this phase 2, randomized, open-label study, adults with KRAS G12C-mutated advanced NSCLC received sotorasib 960 mg or 240 mg once daily. Primary endpoints were objective response rate (ORR) and safety. Secondary endpoints included disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and pharmacokinetics. The study was not powered for formal statistical hypothesis testing. RESULTS: In the 960 mg group (n = 104), ORR was 32.7 % and DCR was 86.5 %. In the 240 mg group (n = 105), ORR was 24.8 % and DCR was 81.9 %. Median PFS was 5.4 months (960 mg) and 5.6 months (240 mg). At a median follow-up of 17.5 months, median OS was 13.0 months (960 mg) and 11.7 months (240 mg). AUC0-24 h and Cmax were 1.3-fold numerically higher with the 960 mg dose. Treatment-emergent adverse events (TEAEs, ≥10 %) for 960 mg and 240 mg doses, respectively, were diarrhea (39.4 %; 31.7 %), nausea (23.1 %; 19.2 %), increased alanine aminotransaminase (14.4 %; 17.3 %), and increased aspartate aminotransferase (13.5 %; 13.5 %). CONCLUSIONS: Patients treated with sotorasib 960 mg once daily had numerically higher ORR and DCR, and longer DOR and OS, than patients treated with 240 mg in this descriptive analysis. TEAEs were manageable with label-directed dose modifications. CLINICAL TRIAL REGISTRATION: NCT03600883.

2.
Adv Sci (Weinh) ; : e2401818, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885350

RESUMEN

Glycosylation is the most common post-translational modification of proteins and regulates a myriad of fundamental biological processes under normal, and pathological conditions. Altered protein glycosylation is linked to malignant transformation, showing distinct glycopatterns that are associated with cancer initiation and progression by regulating tumor proliferation, invasion, metastasis, and therapeutic resistance. The glycopatterns of small extracellular vesicles (sEVs) released by cancer cells are promising candidates for cancer monitoring since they exhibit glycopatterns similar to their cell-of-origin. However, the clinical application of sEV glycans is challenging due to the limitations of current analytical technologies in tracking the trace amounts of sEVs specifically derived from tumors in circulation. Herein, a sEV GLYcan PHenotype (EV-GLYPH) assay that utilizes a microfluidic platform integrated with surface-enhanced Raman scattering for multiplex profiling of sEV glycans in non-small cell lung cancer is clinically validated. For the first time, the EV-GLYPH assay effectively identifies distinct sEV glycan signatures between non-transformed and malignantly transformed lung cells. In a clinical study evaluated on 40 patients, the EV-GLYPH assay successfully differentiates patients with early-stage malignant lung nodules from benign lung nodules. These results reveal the potential to profile sEV glycans for noninvasive diagnostics and prognostics, opening up promising avenues for clinical applications and understanding the role of sEV glycosylation in lung cancer.

3.
ACS Sens ; 9(6): 3009-3016, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38836608

RESUMEN

Immune checkpoint inhibitors (ICIs) targeting programmed cell death ligand 1 (PD-L1), or its receptor, PD-1 have improved survival in patients with non-small-cell lung cancer (NSCLC). Assessment of PD-L1 expression requires tissue biopsy or fine needle aspiration that are currently used to identify patients most likely to respond to single agent anti-PD-1/PD-L1 therapy. However, obtaining sufficient tissue to generate a PD-L1 tissue proportion score (TPS) ≥ 50% using immunohistochemistry remains a challenge that potentially may be overcome by liquid biopsies. This study utilized a mesoporous gold sensor (MGS) assay to examine the phosphorylation status of PD-L1 in plasma extracellular vesicles (EV pPD-L1) and PD-L1 levels in plasma from NSCLC patient samples and their association with tumor PD-L1 TPS. The 3-dimensional mesoporous network of the electrodes provides a large surface area, high signal-to-noise ratio, and a superior electro-conductive framework, thereby significantly improving the detection sensitivity of PD-L1 nanosensing. Test (n = 20) (Pearson's r = 0.99) and validation (n = 45) (Pearson's r = 0.99) cohorts show that EV pPD-L1 status correlates linearly with the tumor PD-L1 TPS assessed by immunohistochemistry irrespective of the tumor stage, with 64% of patients overall showing detectable EV pPD-L1 levels in plasma. In contrast to the EV pPD-L1 results, plasma PD-L1 levels did not correlate with the tumor PD-L1 TPS score or EV pPD-L1 levels. These data demonstrate that EV pPD-L1 levels may be used to select patients for appropriate PD-1 and PD-L1 ICI therapy regimens in early, locally advanced, and advanced NSCLC and should be tested further in randomized controlled trials. Most importantly, the assay used has a less than 24h turnaround time, facilitating adoption of the test into the routine diagnostic evaluation of patients prior to therapy.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Oro , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/sangre , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Oro/química , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Fosforilación , Porosidad , Técnicas Biosensibles/métodos , Persona de Mediana Edad , Masculino , Femenino
4.
Front Oncol ; 14: 1222698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720803

RESUMEN

Background: Triple-negative breast cancer (TNBC) is a sub-classification of breast carcinomas, which leads to poor survival outcomes for patients. TNBCs do not possess the hormone receptors that are frequently targeted as a therapeutic in other cancer subtypes and, therefore, chemotherapy remains the standard treatment for TNBC. Nuclear envelope proteins are frequently dysregulated in cancer cells, supporting their potential as novel cancer therapy targets. The Lem-domain (Lem-D) (LAP2, Emerin, MAN1 domain, and Lem-D) proteins are a family of inner nuclear membrane proteins, which share a ~45-residue Lem-D. The Lem-D proteins, including Ankle2, Lemd2, TMPO, and Emerin, have been shown to be associated with many of the hallmarks of cancer. This study aimed to define the association between the Lem-D proteins and TNBC and determine whether these proteins could be promising therapeutic targets. Methods: GENT2, TCGA, and KM plotter were utilized to investigate the expression and prognostic implications of several Lem-D proteins: Ankle2, TMPO, Emerin, and Lemd2 in publicly available breast cancer patient data. Immunoblotting and immunofluorescent analysis of immortalized non-cancerous breast cells and a panel of TNBC cells were utilized to establish whether protein expression of the Lem-D proteins was significantly altered in TNBC. SiRNA was used to decrease individual Lem-D protein expression, and functional assays, including proliferation assays and apoptosis assays, were conducted. Results: The Lem-D proteins were generally overexpressed in TNBC patient samples at the mRNA level and showed variable expression at the protein level in TNBC cell lysates. Similarly, protein levels were generally negatively correlated with patient survival outcomes. siRNA-mediated depletion of the individual Lem-D proteins in TNBC cells induced aberrant nuclear morphology, decreased proliferation, and induced cell death. However, minimal effects on nuclear morphology or cell viability were observed following Lem-D depletion in non-cancerous MCF10A cells. Conclusion: There is evidence to suggest that Ankle2, TMPO, Emerin, and Lemd2 expressions are correlated with breast cancer patient outcomes, but larger patient sample numbers are required to confirm this. siRNA-mediated depletion of these proteins was shown to specifically impair TNBC cell growth, suggesting that the Lem-D proteins may be a specific anti-cancer target.

5.
JTO Clin Res Rep ; 5(2): 100591, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38357093

RESUMEN

ALK gene rearrangements are detected in approximately 3% to 5% of NSCLC. ALK tyrosine kinase inhibitors, such as third-generation lorlatinib, have exhibited remarkable efficacy in ALK-rearranged NSCLC; however, they have been associated with a low incidence of treatment-limiting and potentially fatal drug-induced interstitial lung disease (ILD). There is concern that this may represent a class effect, a theory that is supported by a number of case reports. Because of clinical trial exclusion criteria, there are limited prospective data to guide decision-making after ALK tyrosine kinase inhibitors-induced ILD. A systematic review of the literature was conducted and only identified four reported cases of lorlatinib safety in this context. Here, we report the successful sequencing of lorlatinib in a patient who discontinued alectinib secondary to grade 3 drug-induced ILD.

6.
Nat Commun ; 15(1): 1823, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418463

RESUMEN

In this phase II, single arm trial (ACTRN12617000720314), we investigate if alternating osimertinib and gefitinib would delay the development of resistance to osimertinib in advanced, non-small cell lung cancer (NSCLC) with the epidermal growth factor receptor (EGFR) T790M mutation (n = 47) by modulating selective pressure on resistant clones. The primary endpoint is progression free-survival (PFS) rate at 12 months, and secondary endpoints include: feasibility of alternating therapy, overall response rate (ORR), overall survival (OS), and safety. The 12-month PFS rate is 38% (95% CI 27.5-55), not meeting the pre-specified primary endpoint. Serial circulating tumor DNA (ctDNA) analysis reveals decrease and clearance of the original activating EGFR and EGFR-T790M mutations which are prognostic of clinical outcomes. In 73% of participants, loss of T790M ctDNA is observed at progression and no participants have evidence of the EGFR C797S resistance mutation following the alternating regimen. These findings highlight the challenges of treatment strategies designed to modulate clonal evolution and the clinical importance of resistance mechanisms beyond suppression of selected genetic mutations in driving therapeutic escape to highly potent targeted therapies.


Asunto(s)
Acrilamidas , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Mutación , Inhibidores de Proteínas Quinasas/efectos adversos , Compuestos de Anilina/uso terapéutico
7.
JAMA Oncol ; 10(4): 475-483, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38358753

RESUMEN

Importance: Arginine deprivation using ADI-PEG20 (pegargiminase) combined with chemotherapy is untested in a randomized study among patients with cancer. ATOMIC-Meso (ADI-PEG20 Targeting of Malignancies Induces Cytotoxicity-Mesothelioma) is a pivotal trial comparing standard first-line chemotherapy plus pegargiminase or placebo in patients with nonepithelioid pleural mesothelioma. Objective: To determine the effect of pegargiminase-based chemotherapy on survival in nonepithelioid pleural mesothelioma, an arginine-auxotrophic tumor. Design, Setting, and Participants: This was a phase 2-3, double-blind randomized clinical trial conducted at 43 centers in 5 countries that included patients with chemotherapy-naive nonepithelioid pleural mesothelioma from August 1, 2017, to August 15, 2021, with at least 12 months' follow-up. Final follow-up was on August 15, 2022. Data analysis was performed from March 2018 to June 2023. Intervention: Patients were randomly assigned (1:1) to receive weekly intramuscular pegargiminase (36.8 mg/m2) or placebo. All patients received intravenous pemetrexed (500 mg/m2) and platinum (75-mg/m2 cisplatin or carboplatin area under the curve 5) chemotherapy every 3 weeks up to 6 cycles. Pegargiminase or placebo was continued until progression, toxicity, or 24 months. Main Outcomes and Measures: The primary end point was overall survival, and secondary end points were progression-free survival and safety. Response rate by blinded independent central review was assessed in the phase 2 portion only. Results: Among 249 randomized patients (mean [SD] age, 69.5 [7.9] years; 43 female individuals [17.3%] and 206 male individuals [82.7%]), all were included in the analysis. The median overall survival was 9.3 months (95% CI, 7.9-11.8 months) with pegargiminase-chemotherapy as compared with 7.7 months (95% CI, 6.1-9.5 months) with placebo-chemotherapy (hazard ratio [HR] for death, 0.71; 95% CI, 0.55-0.93; P = .02). The median progression-free survival was 6.2 months (95% CI, 5.8-7.4 months) with pegargiminase-chemotherapy as compared with 5.6 months (95% CI, 4.1-5.9 months) with placebo-chemotherapy (HR, 0.65; 95% CI, 0.46-0.90; P = .02). Grade 3 to 4 adverse events with pegargiminase occurred in 36 patients (28.8%) and with placebo in 21 patients (16.9%); drug hypersensitivity and skin reactions occurred in the experimental arm in 3 patients (2.4%) and 2 patients (1.6%), respectively, and none in the placebo arm. Rates of poststudy treatments were comparable in both arms (57 patients [45.6%] with pegargiminase vs 58 patients [46.8%] with placebo). Conclusions and Relevance: In this randomized clinical trial of arginine depletion with pegargiminase plus chemotherapy, survival was extended beyond standard chemotherapy with a favorable safety profile in patients with nonepithelioid pleural mesothelioma. Pegargiminase-based chemotherapy as a novel antimetabolite strategy for mesothelioma validates wider clinical testing in oncology. Trial Registration: ClinicalTrials.gov Identifier: NCT02709512.


Asunto(s)
Hidrolasas , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Polietilenglicoles , Anciano , Femenino , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Arginina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Mesotelioma Maligno/tratamiento farmacológico , Mesotelioma Maligno/etiología , Neoplasias Pleurales/tratamiento farmacológico
8.
Br J Cancer ; 130(7): 1196-1205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287178

RESUMEN

BACKGROUND: 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS: Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS: Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS: AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.


Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Organofosfatos , Quinazolinas , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Apoptosis , Aurora Quinasa B/farmacología , Aurora Quinasa B/uso terapéutico , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos
9.
Biology (Basel) ; 12(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37998004

RESUMEN

Human single-stranded DNA binding protein 1 (hSSB1) is critical to preserving genome stability, interacting with single-stranded DNA (ssDNA) through an oligonucleotide/oligosaccharide binding-fold. The depletion of hSSB1 in cell-line models leads to aberrant DNA repair and increased sensitivity to irradiation. hSSB1 is over-expressed in several types of cancers, suggesting that hSSB1 could be a novel therapeutic target in malignant disease. hSSB1 binding studies have focused on DNA; however, despite the availability of 3D structures, small molecules targeting hSSB1 have not been explored. Quinoline derivatives targeting hSSB1 were designed through a virtual fragment-based screening process, synthesizing them using AlphaLISA and EMSA to determine their affinity for hSSB1. In parallel, we further screened a structurally diverse compound library against hSSB1 using the same biochemical assays. Three compounds with nanomolar affinity for hSSB1 were identified, exhibiting cytotoxicity in an osteosarcoma cell line. To our knowledge, this is the first study to identify small molecules that modulate hSSB1 activity. Molecular dynamics simulations indicated that three of the compounds that were tested bound to the ssDNA-binding site of hSSB1, providing a framework for the further elucidation of inhibition mechanisms. These data suggest that small molecules can disrupt the interaction between hSSB1 and ssDNA, and may also affect the ability of cells to repair DNA damage. This test study of small molecules holds the potential to provide insights into fundamental biochemical questions regarding the OB-fold.

10.
Br J Cancer ; 129(12): 2014-2024, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37914802

RESUMEN

BACKGROUND: Lung cancer is the biggest cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85-90% of all lung cancers. Identification of novel therapeutic targets are required as drug resistance impairs chemotherapy effectiveness. COMMD4 is a potential NSCLC therapeutic target. The aims of this study were to investigate the COMMD4-H2B binding pose and develop a short H2B peptide that disrupts the COMMD4-H2B interaction and mimics COMMD4 siRNA depletion. METHODS: Molecular modelling, in vitro binding and site-directed mutagenesis were used to identify the COMMD4-H2B binding pose and develop a H2B peptide to inhibit the COMMD4-H2B interaction. Cell viability, DNA repair and mitotic catastrophe assays were performed to determine whether this peptide can specially kill NSCLC cells. RESULTS: Based on the COMMD4-H2B binding pose, we have identified a H2B peptide that inhibits COMMD4-H2B by directly binding to COMMD4 on its H2B binding binding site, both in vitro and in vivo. Treatment of NSCLC cell lines with this peptide resulted in increased sensitivity to ionising radiation, increased DNA double-strand breaks and induction of mitotic catastrophe in NSCLC cell lines. CONCLUSIONS: Our data shows that COMMD4-H2B represents a novel potential NSCLC therapeutic target.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Reparación del ADN , Péptidos/genética
11.
Sci Rep ; 13(1): 15171, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704669

RESUMEN

Glucose metabolism and DNA repair are fundamental cellular processes frequently dysregulated in cancer. In this study, we define a direct role for the glycolytic Aldolase A (ALDOA) protein in DNA double-strand break (DSB) repair. ALDOA is a fructose biphosphate Aldolase that catalyses fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), during glycolysis. Here, we show that upon DNA damage induced by ionising radiation (IR), ALDOA translocates from the cytoplasm into the nucleus, where it partially co-localises with the DNA DSB marker γ-H2AX. DNA damage was shown to be elevated in ALDOA-depleted cells prior to IR and following IR the damage was repaired more slowly. Consistent with this, cells depleted of ALDOA exhibited decreased DNA DSB repair via non-homologous end-joining and homologous recombination. In support of the defective repair observed in its absence, ALDOA was found to associate with the major DSB repair effector kinases, DNA-dependent Protein Kinase (DNA-PK) and Ataxia Telangiectasia Mutated (ATM) and their autophosphorylation was decreased when ALDOA was depleted. Together, these data establish a role for an essential metabolic protein, ALDOA in DNA DSB repair and suggests that targeting ALDOA may enable the concurrent targeting of cancer metabolism and DNA repair to induce tumour cell death.


Asunto(s)
Ataxia Telangiectasia , Fructosa-Bifosfato Aldolasa , Humanos , Fructosa-Bifosfato Aldolasa/genética , Proteína Quinasa Activada por ADN , Reparación del ADN , Fructosa , ADN , Proteínas de la Ataxia Telangiectasia Mutada/genética
12.
Phys Chem Chem Phys ; 25(36): 24657-24677, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37665626

RESUMEN

Barrier-to-autointegration factor (Banf1) is a small DNA-bridging protein. The binding status of Banf1 to DNA is regulated by its N-terminal phosphorylation and dephosphorylation, which plays a critical role in cell proliferation. Banf1 can be phosphorylated at Ser4 into mono-phosphorylated Banf1, which is further phosphorylated at Thr3 to form di-phosphorylated Banf1. It was observed decades ago that mono-phosphorylated Banf1 cannot bind to DNA. However, the underlying molecular- and atomic-level mechanisms remain unclear. A clear understanding of these mechanisms will aid in interfering with the cell proliferation process for better global health. Herein, we explored the detailed atomic bases of unphosphorylated Banf1-DNA binding and how mono- and di-phosphorylation of Banf1 impair these atomic bases to eliminate its DNA-binding capability, followed by exploring the DNA-binding capability of mono- and di-phosphorylation Banf1, using comprehensive and systematic molecular modelling and molecular dynamics simulations. This work presented in detail the residue-level binding energies, hydrogen bonds and water bridges between Banf1 and DNA, some of which have not been reported. Moreover, we revealed that mono-phosphorylation of Banf1 causes its N-terminal secondary structure changes, which in turn induce significant changes in Banf1's DNA binding surface, thus eliminating its DNA-binding capability. At the atomic level, we also uncovered the alterations in interactions due to the induction of mono-phosphorylation that result in the N-terminal secondary structure changes of Banf1. Additionally, our modelling showed that phosphorylated Banf1 with their dominant N-terminal secondary structures bind to DNA with a significantly lower affinity and the docked binding pose are not stable in MD simulations. These findings help future studies in predicting effect of mutations in Banf1 on its DNA-binding capability and open a novel avenue for the development of therapeutics such as cancer drugs, targeting cell proliferation by inducing conformational changes in Banf1's N-terminal domain.


Asunto(s)
Simulación de Dinámica Molecular , Fosforilación , Conformación Molecular , Proliferación Celular , Enlace de Hidrógeno
13.
Transl Oncol ; 37: 101760, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611490

RESUMEN

Epithelial-mesenchymal plasticity (EMP) is a hallmark of cancer. By enabling cells to shift between different morphological and functional states, EMP promotes invasion, metastasis and therapy resistance. We report that near-diploid non-cancerous human epithelial lung cells spontaneously shift along the EMP spectrum without genetic changes. Strikingly, more than half of single cell-derived clones adopt a mesenchymal morphology. We independently characterise epithelial-like and mesenchymal-like clones. Mesenchymal clones lose epithelial markers, display larger cell aspect ratios and lower motility, with mostly unaltered proliferation rates. Stemness marker expression and metabolic rewiring diverge independently of phenotypes. In 3D culture, more epithelial clones become mesenchymal-like. Thus, non-cancerous epithelial cells may acquire cancer metastasis-associated features prior to genetic alterations and cancerous transformation.

14.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445722

RESUMEN

PTPN11 encodes the SHP2 protein tyrosine phosphatase that activates the mitogen-activated protein kinase (MAPK) pathway upstream of KRAS and MEK. PTPN11/Shp2 somatic mutations occur frequently in Juvenile myelomonocytic leukaemia (JMML); however, the role of mutated PTPN11 in lung cancer tumourigenesis and its utility as a therapeutic target has not been fully addressed. We applied mass-spectrometry-based genotyping to DNA extracted from the tumour and matched the normal tissue of 356 NSCLC patients (98 adenocarcinomas (LUAD) and 258 squamous cell carcinomas (LUSC)). Further, PTPN11 mutation cases were identified in additional cohorts, including TCGA, Broad, and MD Anderson datasets and the COSMIC database. PTPN11 constructs harbouring PTPN11 E76A, A72D and C459S mutations were stably expressed in IL-3 dependent BaF3 cells and NSCLC cell lines (NCI-H1703, NCI-H157, NCI-H1299). The MAPK and PI3K pathway activation was evaluated using Western blotting. PTPN11/Shp2 phosphatase activity was measured in whole-cell protein lysates using an Shp2 assay kit. The Shp2 inhibitor (SHPi) was assessed both in vitro and in vivo in a PTPN11-mutated cell line for improved responses to MAPK and PI3K targeting therapies. Somatic PTPN11 hotspot mutations occurred in 4/98 (4.1%) adenocarcinomas and 7/258 (2.7%) squamous cells of 356 NSCLC patients. Additional 26 PTPN11 hotspot mutations occurred in 23 and 3 adenocarcinomas and squamous cell carcinoma, respectively, across the additional cohorts. Mutant PTPN11 significantly increased the IL-3 independent survival of Ba/F3 cells compared to wildtype PTPN11 (p < 0.0001). Ba/F3, NCI-H1703, and NCI-H157 cells expressing mutant PTPN11 exhibited increased PTPN11/Shp2 phosphatase activity and phospho-ERK1/2 levels compared to cells expressing wildtype PTPN11. The transduction of the PTPN11 inactivating mutation C459S into NSCLC cell lines led to decreased phospho-ERK, as well as decreased phospho-AKT in the PTPN11-mutated NCI-H661 cell line. NCI-H661 cells (PTPN11-mutated, KRAS-wild type) were significantly more sensitive to growth inhibition by the PI3K inhibitor copanlisib (IC50: 13.9 ± 4.7 nM) compared to NCI-H1703 (PTPN11/KRAS-wild type) cells (IC50: >10,000 nM). The SHP2 inhibitor, in combination with the PI3K targeting therapy copanlisib, showed no significant difference in tumour development in vivo; however, this significantly prevented MAPK pathway induction in vitro (p < 0.0001). PTPN11/Shp2 demonstrated the in vitro features of a driver oncogene and could potentially sensitize NSCLC cells to PI3K inhibition and inhibit MAPK pathway activation following PI3K pathway targeting.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Interleucina-3/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Oncogenes , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Adenocarcinoma/genética
15.
J Clin Oncol ; 41(16): 2869-2876, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235976

RESUMEN

PURPOSE: The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). PATIENTS AND METHODS: In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). RESULTS: A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatment-related adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. CONCLUSION: Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.

16.
J Thorac Oncol ; 18(8): 1055-1069, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37146754

RESUMEN

INTRODUCTION: In CheckMate 227 Part 1, nivolumab plus ipilimumab prolonged overall survival (OS) versus chemotherapy in patients with metastatic NSCLC, regardless of tumor programmed death-ligand 1 (PD-L1) expression. Here, we report post hoc exploratory systemic and intracranial efficacy outcomes and safety by baseline brain metastasis status at 5 years' minimum follow-up. METHODS: Treatment-naive adults with stage IV or recurrent NSCLC without EGFR or ALK alterations, including asymptomatic patients with treated brain metastases, were enrolled. Patients with tumor PD-L1 greater than or equal to 1% were randomized to nivolumab plus ipilimumab, nivolumab, or chemotherapy; patients with tumor PD-L1 less than 1% were randomized to nivolumab plus ipilimumab, nivolumab plus chemotherapy, or chemotherapy groups. Assessments included OS, systemic and intracranial progression-free survival per blinded independent central review, new brain lesion development, and safety. Brain imaging was performed at baseline (all randomized patients) and approximately every 12 weeks thereafter (patients with baseline brain metastases only). RESULTS: Overall, 202 of 1739 randomized patients had baseline brain metastases (nivolumab plus ipilimumab: 68; chemotherapy: 66). At 61.3 months' minimum follow-up, nivolumab plus ipilimumab prolonged OS versus chemotherapy in patients with baseline brain metastases (hazard ratio = 0.63; 95% confidence interval: 0.43-0.92) and in those without (hazard ratio = 0.76; 95% confidence interval: 0.66-0.87). In patients with baseline brain metastases, 5-year systemic and intracranial progression-free survival rates were higher with nivolumab plus ipilimumab (12% and 16%, respectively) than chemotherapy (0% and 6%). Fewer patients with baseline brain metastases developed new brain lesions with nivolumab plus ipilimumab (4%) versus chemotherapy (20%). No new safety signals were observed. CONCLUSIONS: With all patients off immunotherapy for more than or equal to 3 years, nivolumab plus ipilimumab continued to provide a long-term, durable survival benefit in patients with or without brain metastases. Intracranial efficacy outcomes favored nivolumab plus ipilimumab versus chemotherapy. These results further support nivolumab plus ipilimumab as an efficacious first-line treatment for patients with metastatic NSCLC, regardless of baseline brain metastasis status.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adulto , Humanos , Nivolumab/farmacología , Nivolumab/uso terapéutico , Ipilimumab/farmacología , Ipilimumab/uso terapéutico , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
17.
Prostate ; 83(7): 628-640, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811381

RESUMEN

BACKGROUND: Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS: We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS: Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS: Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Mitocondriales , Neoplasias de la Próstata , Humanos , Masculino , Antagonistas de Andrógenos/farmacología , Andrógenos/metabolismo , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Proteínas Mitocondriales/metabolismo
18.
J Mol Diagn ; 25(5): 263-273, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773702

RESUMEN

Identification of somatic variants in cancer by high-throughput sequencing has become common clinical practice, largely because many of these variants may be predictive biomarkers for targeted therapies. However, there can be high sample quality control (QC) failure rates for some tests that prevent the return of results. Stem-loop inhibition mediated amplification (SLIMamp) is a patented technology that has been incorporated into commercially available cancer next-generation sequencing testing kits. The claimed advantage is that these kits can interrogate challenging formalin-fixed, paraffin-embedded tissue samples with low tumor purity, poor-quality DNA, and/or low-input DNA, resulting in a high sample QC pass rate. The study aimed to substantiate that claim using Pillar Biosciences oncoReveal Solid Tumor Panel. Forty-eight samples that had failed one or more preanalytical QC sample parameters for whole-exome sequencing from the Australian Translational Genomics Centre's ISO15189-accredited diagnostic genomics laboratory were acquired. XING Genomic Services performed an exploratory data analysis to characterize the samples and then tested the samples in their ISO15189-accredited laboratory. Clinical reports could be generated for 37 (77%) samples, of which 29 (60%) contained clinically actionable or significant variants that would not otherwise have been identified. Eleven samples were deemed unreportable, and the sequencing data were likely dominated by artifacts. A novel postsequencing QC metric was developed that can discriminate between clinically reportable and unreportable samples.


Asunto(s)
Formaldehído , Neoplasias , Humanos , Fijación del Tejido , Australia , Neoplasias/diagnóstico , Neoplasias/genética , ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biomarcadores de Tumor/genética , Mutación , Adhesión en Parafina
19.
Lung Cancer ; 177: 11-20, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669321

RESUMEN

OBJECTIVES: To quantify the long-term comparative efficacy and safety of nivolumab in combination with ipilimumab (NIVO + IPI) relative to other immunotherapy (IO)-based regimens and chemotherapy in patients with first-line advanced non-small cell lung cancer (aNSCLC). METHODS: Phase 3 randomized controlled-trials (RCTs) with minimum 3-year follow-up evaluating IO-based regimens approved for first-line aNSCLC were identified via systematic literature review. Analytic populations were defined by levels of PD-L1 expression and histology. Due to presence of proportional hazards violations, time-varying hazard ratios (HRs) of overall survival (OS) and progression-free survival (PFS) were estimated via Bayesian fractional polynomial network meta-analysis. For safety endpoints, odds ratios (ORs) were estimated using indirect treatment comparisons (ITCs). RESULTS: CheckMate 227, KEYNOTE-189, KEYNOTE-407, KEYNOTE-024, KEYNOTE-042, and IMpower150 were included in the base case analysis. For OS and PFS, HRs of NIVO + IPI relative to other IO-based regimens trended downward over time across analytic populations. The 36-month OS HRs of NIVO + IPI versus comparators were: 0.69 (95 % credible interval: 0.47, 1.00) versus pembrolizumab + chemotherapy and 0.65 (0.45, 0.93) versus atezolizumab + bevacizumab + chemotherapy in the non-squamous and PD-L1 all-comers population; 0.73 (0.53, 1.02) versus pembrolizumab + chemotherapy in the squamous and PD-L1 all-comers population; and 1.05 (0.83, 1.32) versus pembrolizumab in the mixed histology and PD-L1 ≥ 50 % population. For PFS, 36-month HR point estimates ranged from 0.46 to 0.85 (only statistically significant versus pembrolizumab + chemotherapy in the squamous population; 0.46 [0.31, 0.69]). Adverse events (AEs) leading to discontinuation were not statistically significantly different between NIVO + IPI and pembrolizumab + chemotherapy, nor between NIVO + IPI and pembrolizumab monotherapy, although treatment-related grade ≥ 3 AEs were higher with NIVO + IPI than pembrolizumab monotherapy (OR = 2.21 [1.30, 3.75]). CONCLUSIONS: This study indicates trends towards long-term benefit with NIVO + IPI compared with other IO-based combinations, with manageable toxicities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Nivolumab/efectos adversos , Ipilimumab/uso terapéutico , Antígeno B7-H1 , Metaanálisis en Red , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
20.
Protein Sci ; 32(3): e4572, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36691744

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase and its cofactor, Cdh1, regulate the expression of several cell-cycle proteins and their functions during mitosis. Levels of the protein cell division cycle-associated protein 3 (CDCA3), which is functionally required for mitotic entry, are regulated by APC/CCdh1 . CDCA3 is an intrinsically disordered protein and contains both C-terminal KEN box and D-box recognition motifs, enabling binding to Cdh1. Our previous findings demonstrate that CDCA3 has a phosphorylation-dependent non-canonical ABBA-like motif within the linker region bridging these two recognition motifs and is required for efficient binding to Cdh1. Here, we sought to identify and further characterize additional residues that participate within this ABBA-like motif using detailed in vitro experiments and in silico modeling studies. We identified the role of H-bonds, hydrophobic and ionic interactions across the CDCA3 ABBA-like motif in the linker region between KEN and D-box motifs. This linker region adopts a well-defined structure when bound to Cdh1 in the presence of phosphorylation. Upon alanine mutation, the structure of this region is lost, leading to higher flexibility, and alteration in affinities due to binding to alternate sites on Cdh1. Our findings identify roles for the anchoring residues in the non-canonical ABBA-like motif to promote binding to the APC/CCdh1 and regulation of CDCA3 protein levels.


Asunto(s)
Proteínas de Ciclo Celular , Simulación de Dinámica Molecular , Proteínas Cdh1/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/química , Ciclo Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA