Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
2.
Magn Reson Med ; 91(3): 972-986, 2024 Mar.
Article En | MEDLINE | ID: mdl-38013206

PURPOSE: To demonstrate proof-of-concept of a T2 *-sensitized oxygen-enhanced MRI (OE-MRI) method at 3T by assessing signal characteristics, repeatability, and reproducibility of dynamic lung OE-MRI metrics in healthy volunteers. METHODS: We performed sequence-specific simulations for protocol optimisation and acquired free-breathing OE-MRI data from 16 healthy subjects using a dual-echo RF-spoiled gradient echo approach at 3T across two institutions. Non-linear registration and tissue density correction were applied. Derived metrics included percent signal enhancement (PSE), ∆R2 * and wash-in time normalized for breathing rate (τ-nBR). Inter-scanner reproducibility and intra-scanner repeatability were evaluated using intra-class correlation coefficient (ICC), repeatability coefficient, reproducibility coefficient, and Bland-Altman analysis. RESULTS: Simulations and experimental data show negative contrast upon oxygen inhalation, due to substantial dominance of ∆R2 * at TE > 0.2 ms. Density correction improved signal fluctuations. Density-corrected mean PSE values, aligned with simulations, display TE-dependence, and an anterior-to-posterior PSE reduction trend at TE1 . ∆R2 * maps exhibit spatial heterogeneity in oxygen delivery, featuring anterior-to-posterior R2 * increase. Mean T2 * values across 32 scans were 0.68 and 0.62 ms for pre- and post-O2 inhalation, respectively. Excellent or good agreement emerged from all intra-, inter-scanner and inter-rater variability tests for PSE and ∆R2 *. However, ICC values for τ-nBR demonstrated limited agreement between repeated measures. CONCLUSION: Our results demonstrate the feasibility of a T2 *-weighted method utilizing a dual-echo RF-spoiled gradient echo approach, simultaneously capturing PSE, ∆R2 * changes, and oxygen wash-in during free-breathing. The excellent or good repeatability and reproducibility on intra- and inter-scanner PSE and ∆R2 * suggest potential utility in multi-center clinical applications.


Magnetic Resonance Imaging , Oxygen , Humans , Reproducibility of Results , Feasibility Studies , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging
3.
Magn Reson Med ; 91(3): 955-971, 2024 Mar.
Article En | MEDLINE | ID: mdl-37984456

PURPOSE: Dynamic lung oxygen-enhanced MRI (OE-MRI) is challenging due to the presence of confounding signals and poor signal-to-noise ratio, particularly at 3 T. We have created a robust pipeline utilizing independent component analysis (ICA) to automatically extract the oxygen-induced signal change from confounding factors to improve the accuracy and sensitivity of lung OE-MRI. METHODS: Dynamic OE-MRI was performed on healthy participants using a dual-echo multi-slice spoiled gradient echo sequence at 3 T and cyclical gas delivery. ICA was applied to each echo within a thoracic mask. The ICA component relating to the oxygen-enhancement signal was automatically identified using correlation analysis. The oxygen-enhancement component was reconstructed, and the percentage signal enhancement (PSE) was calculated. The lung PSE of current smokers was compared with nonsmokers; scan-rescan repeatability, ICA pipeline repeatability, and reproducibility between two vendors were assessed. RESULTS: ICA successfully extracted a consistent oxygen-enhancement component for all participants. Lung tissue and oxygenated blood displayed the opposite oxygen-induced signal enhancements. A significant difference in PSE was observed between the lungs of current smokers and nonsmokers. The scan-rescan repeatability and the ICA pipeline repeatability were good. CONCLUSION: The developed pipeline demonstrated sensitivity to the signal enhancements of the lung tissue and oxygenated blood at 3 T. The difference in lung PSE between current smokers and nonsmokers indicates a likely sensitivity to lung function alterations that may be seen in mild pathology, supporting future use of our methods in patient studies.


Lung , Oxygen , Humans , Reproducibility of Results , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods
4.
Magn Reson Med ; 91(5): 1803-1821, 2024 May.
Article En | MEDLINE | ID: mdl-38115695

PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.


Contrast Media , Magnetic Resonance Imaging , Humans , Reproducibility of Results , Magnetic Resonance Imaging/methods , Software , Algorithms
5.
Magn Reson Med ; 90(3): 1130-1136, 2023 09.
Article En | MEDLINE | ID: mdl-37222226

The British and Irish Chapter of the International Society for Magnetic Resonance in Medicine (BIC-ISMRM) held a workshop entitled "Steps on the path to clinical translation" in Cardiff, UK, on 7th September 2022. The aim of the workshop was to promote discussion within the MR community about the problems and potential solutions for translating quantitative MR (qMR) imaging and spectroscopic biomarkers into clinical application and drug studies. Invited speakers presented the perspectives of radiologists, radiographers, clinical physicists, vendors, imaging Contract/Clinical Research Organizations (CROs), open science networks, metrologists, imaging networks, and those developing consensus methods. A round-table discussion was held in which workshop participants discussed a range of questions pertinent to clinical translation of qMR imaging and spectroscopic biomarkers. Each group summarized their findings via three main conclusions and three further questions. These questions were used as the basis of an online survey of the broader UK MR community.


Magnetic Resonance Imaging , Humans , Magnetic Resonance Spectroscopy , Biomarkers
6.
Radiother Oncol ; 183: 109592, 2023 06.
Article En | MEDLINE | ID: mdl-36870608

BACKGROUND AND PURPOSE: Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system. MATERIALS AND METHODS: MRI sequences were developed in phantoms and 15 healthy participants. Next, 14 HNC patients (with 21 primary or local nodal tumours) were evaluated. Baseline tissue longitudinal relaxation time (T1) was measured alongside the change in 1/T1 (termed ΔR1) between air and oxygen gas breathing phases. We compared results from 1.5 T diagnostic MR and MR Linac systems. RESULTS: Baseline T1 had excellent repeatability in phantoms, healthy participants and patients on both systems. Cohort nasal concha oxygen-induced ΔR1 significantly increased (p < 0.0001) in healthy participants demonstrating OE-MRI feasibility. ΔR1 repeatability coefficients (RC) were 0.023-0.040 s-1 across both MR systems. The tumour ΔR1 RC was 0.013 s-1 and the within-subject coefficient of variation (wCV) was 25% on the diagnostic MR. Tumour ΔR1 RC was 0.020 s-1 and wCV was 33% on the MR Linac. ΔR1 magnitude and time-course trends were similar on both systems. CONCLUSION: We demonstrate first-in-human translation of volumetric, dynamic OE-MRI onto an MR Linac system, yielding repeatable hypoxia biomarkers. Data were equivalent on the diagnostic MR and MR Linac systems. OE-MRI has potential to guide future clinical trials of biology guided adaptive radiotherapy.


Head and Neck Neoplasms , Oxygen , Humans , Magnetic Resonance Imaging/methods , Head and Neck Neoplasms/diagnostic imaging , Hypoxia , Prognosis , Particle Accelerators
7.
Clin Cancer Res ; 29(14): 2602-2611, 2023 07 14.
Article En | MEDLINE | ID: mdl-36799931

PURPOSE: A single maintenance course of a PARP inhibitor (PARPi) improves progression-free survival (PFS) in germline BRCA1/2-mutant high-grade serous ovarian cancer (gBRCAm-HGSOC). The feasibility of a second maintenance course of PARPi was unknown. PATIENTS AND METHODS: Phase II trial with two entry points (EP1, EP2). Patients were recruited prior to rechallenge platinum. Patients with relapsed, gBRCAm-HGSOC were enrolled at EP1 if they were PARPi-naïve. Patients enrolled at EP2 had received their first course of olaparib prior to trial entry. EP1 patients were retreated with olaparib after RECIST complete/partial response (CR/PR) to platinum. EP2 patients were retreated with olaparib ± cediranib after RECIST CR/PR/stable disease to platinum and according to the platinum-free interval. Co-primary outcomes were the proportion of patients who received a second course of olaparib and the proportion who received olaparib retreatment for ≥6 months. Functional homologous recombination deficiency (HRD), somatic copy-number alteration (SCNA), and BRCAm reversions were investigated in tumor and liquid biopsies. RESULTS: Twenty-seven patients were treated (EP1 = 17, EP2 = 10), and 19 were evaluable. Twelve patients (63%) received a second course of olaparib and 4 received olaparib retreatment for ≥6 months. Common grade ≥2 adverse events during olaparib retreatment were anemia, nausea, and fatigue. No cases of MDS/AML occurred. Mean duration of olaparib treatment and retreatment differed (12.1 months vs. 4.4 months; P < 0.001). Functional HRD and SCNA did not predict PFS. A BRCA2 reversion mutation was detected in a post-olaparib liquid biopsy. CONCLUSIONS: A second course of olaparib can be safely administered to women with gBRCAm-HGSOC but is only modestly efficacious. See related commentary by Gonzalez-Ochoa and Oza, p. 2563.


Antineoplastic Agents , Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Antineoplastic Agents/therapeutic use , Phthalazines/adverse effects , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality
9.
Nat Rev Clin Oncol ; 20(2): 69-82, 2023 Feb.
Article En | MEDLINE | ID: mdl-36443594

Computer-extracted tumour characteristics have been incorporated into medical imaging computer-aided diagnosis (CAD) algorithms for decades. With the advent of radiomics, an extension of CAD involving high-throughput computer-extracted quantitative characterization of healthy or pathological structures and processes as captured by medical imaging, interest in such computer-extracted measurements has increased substantially. However, despite the thousands of radiomic studies, the number of settings in which radiomics has been successfully translated into a clinically useful tool or has obtained FDA clearance is comparatively small. This relative dearth might be attributable to factors such as the varying imaging and radiomic feature extraction protocols used from study to study, the numerous potential pitfalls in the analysis of radiomic data, and the lack of studies showing that acting upon a radiomic-based tool leads to a favourable benefit-risk balance for the patient. Several guidelines on specific aspects of radiomic data acquisition and analysis are already available, although a similar roadmap for the overall process of translating radiomics into tools that can be used in clinical care is needed. Herein, we provide 16 criteria for the effective execution of this process in the hopes that they will guide the development of more clinically useful radiomic tests in the future.

11.
Insights Imaging ; 13(1): 159, 2022 Oct 04.
Article En | MEDLINE | ID: mdl-36194301

BACKGROUND: Lesion/tissue segmentation on digital medical images enables biomarker extraction, image-guided therapy delivery, treatment response measurement, and training/validation for developing artificial intelligence algorithms and workflows. To ensure data reproducibility, criteria for standardised segmentation are critical but currently unavailable. METHODS: A modified Delphi process initiated by the European Imaging Biomarker Alliance (EIBALL) of the European Society of Radiology (ESR) and the European Organisation for Research and Treatment of Cancer (EORTC) Imaging Group was undertaken. Three multidisciplinary task forces addressed modality and image acquisition, segmentation methodology itself, and standards and logistics. Devised survey questions were fed via a facilitator to expert participants. The 58 respondents to Round 1 were invited to participate in Rounds 2-4. Subsequent rounds were informed by responses of previous rounds. RESULTS/CONCLUSIONS: Items with ≥ 75% consensus are considered a recommendation. These include system performance certification, thresholds for image signal-to-noise, contrast-to-noise and tumour-to-background ratios, spatial resolution, and artefact levels. Direct, iterative, and machine or deep learning reconstruction methods, use of a mixture of CE marked and verified research tools were agreed and use of specified reference standards and validation processes considered essential. Operator training and refreshment were considered mandatory for clinical trials and clinical research. Items with a 60-74% agreement require reporting (site-specific accreditation for clinical research, minimal pixel number within lesion segmented, use of post-reconstruction algorithms, operator training refreshment for clinical practice). Items with ≤ 60% agreement are outside current recommendations for segmentation (frequency of system performance tests, use of only CE-marked tools, board certification of operators, frequency of operator refresher training). Recommendations by anatomical area are also specified.

12.
Radiother Oncol ; 176: 53-58, 2022 11.
Article En | MEDLINE | ID: mdl-36184998

PURPOSE: Retrospective studies have identified a link between the average set-up error of lung cancer patients treated with image-guided radiotherapy (IGRT) and survival. The IGRT protocol was subsequently changed to reduce the action threshold. In this study, we use a Bayesian approach to evaluate the clinical impact of this change to practice using routine 'real-world' patient data. METHODS AND MATERIALS: Two cohorts of NSCLC patients treated with IGRT were compared: pre-protocol change (N = 780, 5 mm action threshold) and post-protocol change (N = 411, 2 mm action threshold). Survival models were fitted to each cohort and changes in the hazard ratios (HR) associated with residual set-up errors was assessed. The influence of using an uninformative and a skeptical prior in the model was investigated. RESULTS: Following the reduction of the action threshold, the HR for residual set-up error towards the heart was reduced by up to 10%. Median patient survival increased for patients with set-up errors towards the heart, and remained similar for patients with set-up errors away from the heart. Depending on the prior used, a residual hazard ratio may remain. CONCLUSIONS: Our analysis found a reduced hazard of death and increased survival for patients with residual set-up errors towards versus away from the heart post-protocol change. This study demonstrates the value of a Bayesian approach in the assessment of technical changes in radiotherapy practice and supports the consideration of adopting this approach in further prospective evaluations of changes to clinical practice.


Lung Neoplasms , Radiotherapy, Image-Guided , Humans , Radiotherapy Planning, Computer-Assisted/methods , Bayes Theorem , Retrospective Studies , Radiotherapy, Image-Guided/methods , Radiotherapy Setup Errors , Lung Neoplasms/radiotherapy
13.
Phys Med ; 101: 165-182, 2022 Sep.
Article En | MEDLINE | ID: mdl-36055125

PURPOSE: This overview of the current landscape of quantitative magnetic resonance imaging biomarkers (qMR IBs) aims to support the standardisation of academic IBs to assist their translation to clinical practice. METHODS: We used three complementary approaches to investigate qMR IB use and quality management practices within the UK: 1) a literature search of qMR and quality management terms during 2011-2015 and 2016-2020; 2) a database search for clinical research studies using qMR IBs during 2016-2020; and 3) a survey to ascertain the current availability and quality management practices for clinical MRI scanners and associated equipment at research institutions across the UK. RESULTS: The analysis showed increased use of all qMR methods between the periods 2011-2015 and 2016-2020 and diffusion-tensor MRI and volumetry to be popular methods. However, the "translation ratio" of journal articles to clinical research studies was higher for qMR methods that have evidence of clinical translation via a commercial route, such as fat fraction and T2 mapping. The number of journal articles citing quality management terms doubled between the periods 2011-2015 and 2016-2020; although, its proportion relative to all journal articles only increased by 3.0%. The survey suggested that quality assurance (QA) and quality control (QC) of data acquisition procedures are under-reported in the literature and that QA/QC of acquired data/data analysis are under-developed and lack consistency between institutions. CONCLUSIONS: We summarise current attempts to standardise and translate qMR IBs, and conclude by outlining the ideal quality management practices and providing a gap analysis between current practice and a metrological standard.


Biomarkers , Humans , Diffusion Tensor Imaging , Magnetic Resonance Imaging/methods
14.
Front Oncol ; 12: 899180, 2022.
Article En | MEDLINE | ID: mdl-35924167

Background: Size-based assessments are inaccurate indicators of tumor response in soft-tissue sarcoma (STS), motivating the requirement for new response imaging biomarkers for this rare and heterogeneous disease. In this study, we assess the test-retest repeatability of radiomic features from MR diffusion-weighted imaging (DWI) and derived maps of apparent diffusion coefficient (ADC) in retroperitoneal STS and compare baseline repeatability with changes in radiomic features following radiotherapy (RT). Materials and Methods: Thirty patients with retroperitoneal STS received an MR examination prior to treatment, of whom 23/30 were investigated in our repeatability analysis having received repeat baseline examinations and 14/30 patients were investigated in our post-treatment analysis having received an MR examination after completing pre-operative RT. One hundred and seven radiomic features were extracted from the full manually delineated tumor region using PyRadiomics. Test-retest repeatability was assessed using an intraclass correlation coefficient (baseline ICC), and post-radiotherapy variance analysis (post-RT-IMS) was used to compare the change in radiomic feature value to baseline repeatability. Results: For the ADC maps and DWI images, 101 and 102 features demonstrated good baseline repeatability (baseline ICC > 0.85), respectively. Forty-three and 2 features demonstrated both good baseline repeatability and a high post-RT-IMS (>0.85), respectively. Pearson correlation between the baseline ICC and post-RT-IMS was weak (0.432 and 0.133, respectively). Conclusions: The ADC-based radiomic analysis shows better test-retest repeatability compared with features derived from DWI images in STS, and some of these features are sensitive to post-treatment change. However, good repeatability at baseline does not imply sensitivity to post-treatment change.

15.
Cancers (Basel) ; 14(9)2022 Apr 26.
Article En | MEDLINE | ID: mdl-35565288

Imaging biomarkers are used in therapy development to identify and quantify therapeutic response. In oncology, use of MRI, PET and other imaging methods can be complicated by spatially complex and heterogeneous tumor micro-environments, non-Gaussian data and small sample sizes. Linear Poisson Modelling (LPM) enables analysis of complex data that is quantitative and can operate in small data domains. We performed experiments in 5 mouse models to evaluate the ability of LPM to identify responding tumor habitats across a range of radiation and targeted drug therapies. We tested if LPM could identify differential biological response rates. We calculated the theoretical sample size constraints for applying LPM to new data. We then performed a co-clinical trial using small data to test if LPM could detect multiple therapeutics with both improved power and reduced animal numbers compared to conventional t-test approaches. Our data showed that LPM greatly increased the amount of information extracted from diffusion-weighted imaging, compared to cohort t-tests. LPM distinguished biological response rates between Calu6 tumors treated with 3 different therapies and between Calu6 tumors and 4 other xenograft models treated with radiotherapy. A simulated co-clinical trial using real data detected high precision per-tumor treatment effects in as few as 3 mice per cohort, with p-values as low as 1 in 10,000. These findings provide a route to simultaneously improve the information derived from preclinical imaging while reducing and refining the use of animals in cancer research.

17.
Diagnostics (Basel) ; 11(11)2021 Nov 17.
Article En | MEDLINE | ID: mdl-34829482

Perianal Crohn's Disease (pCD) is a common manifestation of Crohn's Disease. Absence of reliable disease measures makes disease monitoring unreliable. Qualitative MRI has been increasingly used for diagnosing and monitoring pCD and has shown potential for assessing response to treatment. Quantitative MRI sequences, such as diffusion-weighted imaging (DWI), dynamic contrast enhancement (DCE) and magnetisation transfer (MT), along with T2 relaxometry, offer opportunities to improve diagnostic capability. Quantitative MRI sequences (DWI, DCE, MT and T2) were used in a cohort of 25 pCD patients before and 12 weeks after biological therapy at two different field strengths (1.5 and 3 T). Disease activity was measured with the Perianal Crohn's Disease Activity index (PDAI) and serum C-reactive protein (CRP). Diseased tissue areas on MRI were defined by a radiologist. A baseline model to predict outcome at 12 weeks was developed. No differences were seen in the quantitative MR measured in the diseased tissue regions from baseline to 12 weeks; however, PDAI and CRP decreased. Baseline PDAI, CRP, T2 relaxometry and surgical history were found to have a moderate ability to predict response after 12 weeks of biological treatment. Validation in larger cohorts with MRI and clinical measures are needed in order to further develop the model.

18.
Radiographics ; 41(6): 1717-1732, 2021 Oct.
Article En | MEDLINE | ID: mdl-34597235

Radiomics refers to the extraction of mineable data from medical imaging and has been applied within oncology to improve diagnosis, prognostication, and clinical decision support, with the goal of delivering precision medicine. The authors provide a practical approach for successfully implementing a radiomic workflow from planning and conceptualization through manuscript writing. Applications in oncology typically are either classification tasks that involve computing the probability of a sample belonging to a category, such as benign versus malignant, or prediction of clinical events with a time-to-event analysis, such as overall survival. The radiomic workflow is multidisciplinary, involving radiologists and data and imaging scientists, and follows a stepwise process involving tumor segmentation, image preprocessing, feature extraction, model development, and validation. Images are curated and processed before segmentation, which can be performed on tumors, tumor subregions, or peritumoral zones. Extracted features typically describe the distribution of signal intensities and spatial relationship of pixels within a region of interest. To improve model performance and reduce overfitting, redundant and nonreproducible features are removed. Validation is essential to estimate model performance in new data and can be performed iteratively on samples of the dataset (cross-validation) or on a separate hold-out dataset by using internal or external data. A variety of noncommercial and commercial radiomic software applications can be used. Guidelines and artificial intelligence checklists are useful when planning and writing up radiomic studies. Although interest in the field continues to grow, radiologists should be familiar with potential pitfalls to ensure that meaningful conclusions can be drawn. Online supplemental material is available for this article. Published under a CC BY 4.0 license.


Artificial Intelligence , Image Processing, Computer-Assisted , Diagnostic Imaging , Humans , Medical Oncology , Radiography
19.
Int J Gynecol Cancer ; 31(11): 1459-1470, 2021 11.
Article En | MEDLINE | ID: mdl-34593564

The annual global incidence of cervical cancer is approximately 604 000 cases/342 000 deaths, making it the fourth most common cancer in women. Cervical cancer is a major healthcare problem in low and middle income countries where 85% of new cases and deaths occur. Secondary prevention measures have reduced incidence and mortality in developed countries over the past 30 years, but cervical cancer remains a major cause of cancer deaths in women. For women who present with Fédération Internationale de Gynécologie et d'Obstétrique (FIGO 2018) stages IB3 or upwards, chemoradiation is the established treatment. Despite high rates of local control, overall survival is less than 50%, largely due to distant relapse. Reducing the health burden of cervical cancer requires greater individualization of treatment, identifying those at risk of relapse and progression for modified or intensified treatment. Hypoxia is a well known feature of solid tumors and an established therapeutic target. Low tumorous oxygenation increases the risk of local invasion, metastasis and treatment failure. While meta-analyses show benefit, many individual trials targeting hypoxia failed in part due to not selecting patients most likely to benefit. This review summarizes the available hypoxia-targeted strategies and identifies further research and new treatment paradigms needed to improve patient outcomes. The applications and limitations of hypoxia biomarkers for treatment selection and response monitoring are discussed. Finally, areas of greatest unmet clinical need are identified to measure and target hypoxia and therefore improve cervical cancer outcomes.


Chemoradiotherapy/methods , Tumor Hypoxia/physiology , Uterine Cervical Neoplasms/therapy , Biomarkers/analysis , Female , Global Health , Humans , Positron-Emission Tomography , Tumor Hypoxia/drug effects , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/pathology
20.
Magn Reson Med ; 86(4): 1829-1844, 2021 10.
Article En | MEDLINE | ID: mdl-33973674

PURPOSE: We introduce a novel, generalized tracer kinetic model selection framework to quantify microvascular characteristics of liver and tumor tissue in gadoxetate-enhanced dynamic contrast-enhanced MRI (DCE-MRI). METHODS: Our framework includes a hierarchy of nested models, from which physiological parameters are derived in 2 regimes, corresponding to the active transport and free diffusion of gadoxetate. We use simulations to show the sensitivity of model selection and parameter estimation to temporal resolution, time-series duration, and noise. We apply the framework in 8 healthy volunteers (time-series duration up to 24 minutes) and 10 patients with hepatocellular carcinoma (6 minutes). RESULTS: The active transport regime is preferred in 98.6% of voxels in volunteers, 82.1% of patients' non-tumorous liver, and 32.2% of tumor voxels. Interpatient variations correspond to known co-morbidities. Simulations suggest both datasets have sufficient temporal resolution and signal-to-noise ratio, while patient data would be improved by using a time-series duration of at least 12 minutes. CONCLUSIONS: In patient data, gadoxetate exhibits different kinetics: (a) between liver and tumor regions and (b) within regions due to liver disease and/or tumor heterogeneity. Our generalized framework selects a physiological interpretation at each voxel, without preselecting a model for each region or duplicating time-consuming optimizations for models with identical functional forms.


Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnostic imaging , Contrast Media , Gadolinium DTPA , Humans , Liver/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging
...