Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
iScience ; 25(12): 105569, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36465107

RESUMEN

Growth differentiation factor 15 (GDF15) is a stress-induced secreted protein whose circulating levels are increased in the context of obesity. Recombinant GDF15 reduces body weight and improves glycemia in obese models, which is largely attributed to the central action of GDF15 to suppress feeding and reduce body weight. Despite these advances in knowledge, the tissue-specific sites of GDF15 production during obesity are unknown, and the effects of modulating circulating GDF15 levels on insulin sensitivity have not been evaluated directly. Here, we demonstrate that hepatocyte Gdf15 expression is sufficient for changes in circulating levels of GDF15 during obesity and that restoring Gdf15 expression specifically in hepatocytes of Gdf15 knockout mice results in marked improvements in hyperinsulinemia, hepatic insulin sensitivity, and to a lesser extent peripheral insulin sensitivity. These data support that liver hepatocytes are the primary source of circulating GDF15 in obesity.

2.
Psychopharmacology (Berl) ; 239(10): 3185-3200, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35915264

RESUMEN

RATIONALE: Synthetic opioids like fentanyl are contributing to the rise in rates of opioid use disorder and drug overdose deaths. Sleep dysfunction and circadian rhythm disruption may worsen during opioid withdrawal and persist during abstinence. Severe and persistent sleep and circadian alterations are putative factors in opioid craving and relapse. However, very little is known about the impact of fentanyl on sleep architecture and sleep-wake cycles, particularly opioid withdrawal. Further, circadian rhythms regulate sleep-wake cycles, and the circadian transcription factor, neuronal PAS domain 2 (NPAS2) is involved in the modulation of sleep architecture and drug reward. Here, we investigate the role of NPAS2 in fentanyl-induced sleep alterations. OBJECTIVES: To determine the effect of fentanyl administration and withdrawal on sleep architecture, and the role of NPAS2 as a factor in fentanyl-induced sleep changes. METHODS: Electroencephalography (EEG) and electromyography (EMG) was used to measure non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) at baseline and following acute and chronic fentanyl administration in wild-type and NPAS2-deficient male mice. RESULTS: Acute and chronic administration of fentanyl led to increased wake and arousal in both wild-type and NPAS2-deficient mice, an effect that was more pronounced in NPAS2-deficient mice. Chronic fentanyl administration led to decreased NREMS, which persisted during withdrawal, progressively decreasing from day 1 to 4 of withdrawal. The impact of fentanyl on NREMS and arousal was more pronounced in NPAS2-deficient mice. CONCLUSIONS: Chronic fentanyl disrupts NREMS, leading to a progressive loss of NREMS during subsequent days of withdrawal. Loss of NPAS2 exacerbates the impact of fentanyl on sleep and wake, revealing a potential role for the circadian transcription factor in opioid-induced sleep changes.


Asunto(s)
Fentanilo , Factores de Transcripción , Analgésicos Opioides/farmacología , Animales , Nivel de Alerta , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano , Electroencefalografía , Movimientos Oculares , Fentanilo/farmacología , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Sueño , Vigilia
3.
Curr Res Physiol ; 5: 232-239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677213

RESUMEN

Sodium-glucose co-transporter type 2 (SGLT2) inhibitor therapy to treat type 2 diabetes unexpectedly reduced all-cause mortality and hospitalization due to heart failure in several large-scale clinical trials, and has since been shown to produce similar cardiovascular disease-protective effects in patients without diabetes. How SGLT2 inhibitor therapy improves cardiovascular disease outcomes remains incompletely understood. Metabolic flexibility refers to the ability of a cell or organ to adjust its use of metabolic substrates, such as glucose or fatty acids, in response to physiological or pathophysiological conditions, and is a feature of a healthy heart that may be lost during diabetic cardiomyopathy and in the failing heart. We therefore undertook studies to determine the effects of SGLT2 inhibitor therapy on cardiac metabolic flexibility in vivo in obese, insulin resistant mice using a [U13C]-glucose infusion during fasting and hyperinsulinemic euglycemic clamp. Relative rates of cardiac glucose versus fatty acid use during fasting were unaffected by EMPA, whereas insulin-stimulated rates of glucose use were significantly increased by EMPA, alongside significant improvements in cardiac insulin signaling. These metabolic effects of EMPA were associated with reduced cardiac hypertrophy and protection from ischemia. These observations suggest that the cardiovascular disease-protective effects of SGLT2 inhibitors may in part be explained by beneficial effects on cardiac metabolic substrate selection.

4.
Crit Care Explor ; 3(10): e550, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34651137

RESUMEN

Preclinical studies from our laboratory demonstrated therapeutic effects of enteral dextrose administration in the acute phase of sepsis, mediated by the intestine-derived incretin hormone glucose-dependent insulinotropic peptide. The current study investigated the effects of an early enteral dextrose infusion on systemic inflammation and glucose metabolism in critically ill septic patients. DESIGN: Single-center, double-blind, placebo-controlled randomized pilot clinical trial (NCT03454087). SETTING: Tertiary-care medical center in Pittsburgh, PA. PATIENTS: Critically ill adult patients within 48 hours of sepsis diagnosis and with established enteral access. INTERVENTIONS: Participants were randomized 1:1 to receive a continuous water (placebo) or enteral dextrose infusion (50% dextrose; 0.5 g/mL) at 10 mL per hour for 24 hours. MEASUREMENTS AND MAIN RESULTS: We randomized 58 participants between June 2018 and January 2020 (placebo: n = 29, dextrose: n = 29). Protocol adherence was high with similar duration of study infusion in the placebo (median duration, 24 hr [interquartile range, 20.9-24 hr]) and dextrose (23.9 hr [23-24 hr]) groups (p = 0.59). The primary outcome of circulating interleukin-6 at end-infusion did not differ between the dextrose (median, 32 pg/mL [19-79 pg/mL]) and placebo groups (24 pg/mL [9-59 pg/mL]; p = 0.13) with similar results in other measures of the systemic host immune response. Enteral dextrose increased circulating glucose-dependent insulinotropic peptide (76% increase; 95% CI [35-119]; p < 0.01) and insulin (53% [17-88]; p < 0.01) compared with placebo consistent with preclinical studies, but also increased blood glucose during the 24-hour infusion period (153 mg/dL [119-223] vs 116 mg/dL [91-140]; p < 0.01). Occurrence of emesis, ICU and hospital length of stay, and 30-day mortality did not differ between the placebo and enteral dextrose groups. CONCLUSIONS: Early infusion of low-level enteral dextrose in critically ill septic patients increased circulating levels of insulin and the incretin hormone glucose-dependent insulinotropic peptide without decreasing systemic inflammation.

5.
PLoS One ; 16(3): e0248853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33755703

RESUMEN

Hyperglycemia during sepsis is associated with increased organ dysfunction and higher mortality. The role of the host immune response in development of hyperglycemia during sepsis remains unclear. We performed a retrospective analysis of critically ill adult septic patients requiring mechanical ventilation (n = 153) to study the relationship between hyperglycemia and ten markers of the host injury and immune response measured on the first day of ICU admission (baseline). We determined associations between each biomarker and: (1) glucose, insulin, and c-peptide levels at the time of biomarker collection by Pearson correlation; (2) average glucose and glycemic variability in the first two days of ICU admission by linear regression; and (3) occurrence of hyperglycemia (blood glucose>180mg/dL) by logistic regression. Results were adjusted for age, pre-existing diabetes mellitus, severity of illness, and total insulin and glucocorticoid dose. Baseline plasma levels of ST2 and procalcitonin were positively correlated with average blood glucose and glycemic variability in the first two days of ICU admission in unadjusted and adjusted analyses. Additionally, higher baseline ST2, IL-1ra, procalcitonin, and pentraxin-3 levels were associated with increased risk of hyperglycemia. Our results suggest associations between the host immune response and hyperglycemia in critically ill septic patients particularly implicating the interleukin-1 axis (IL-1ra), the interleukin-33 axis (ST2), and the host response to bacterial infections (procalcitonin, pentraxin-3).


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Hiperglucemia/inmunología , Inmunidad , Respiración Artificial , Sepsis/inmunología , Enfermedad Aguda , Anciano , Biomarcadores/metabolismo , Glucemia/metabolismo , Femenino , Hospitalización , Humanos , Hiperglucemia/sangre , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Sepsis/sangre
6.
Nat Chem Biol ; 17(3): 298-306, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33495648

RESUMEN

The adenosine monophosphate (AMP)-activated protein kinase (Ampk) is a central regulator of metabolic pathways, and increasing Ampk activity has been considered to be an attractive therapeutic target. Here, we have identified an orphan ubiquitin E3 ligase subunit protein, Fbxo48, that targets the active, phosphorylated Ampkα (pAmpkα) for polyubiquitylation and proteasomal degradation. We have generated a novel Fbxo48 inhibitory compound, BC1618, whose potency in stimulating Ampk-dependent signaling greatly exceeds 5-aminoimidazole-4-carboxamide-1-ß-ribofuranoside (AICAR) or metformin. This compound increases the biological activity of Ampk not by stimulating the activation of Ampk, but rather by preventing activated pAmpkα from Fbxo48-mediated degradation. We demonstrate that, consistent with augmenting Ampk activity, BC1618 promotes mitochondrial fission, facilitates autophagy and improves hepatic insulin sensitivity in high-fat-diet-induced obese mice. Hence, we provide a unique bioactive compound that inhibits pAmpkα disposal. Together, these results define a new pathway regulating Ampk biological activity and demonstrate the potential utility of modulating this pathway for therapeutic benefit.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Hipoglucemiantes/farmacología , Obesidad/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular Transformada , Dieta Alta en Grasa , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas F-Box , Humanos , Hipoglucemiantes/síntesis química , Resistencia a la Insulina , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Dinámicas Mitocondriales/efectos de los fármacos , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Fosforilación , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Ribonucleótidos/farmacología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
Endocrinology ; 161(11)2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901804

RESUMEN

Glucocorticoid signaling controls many key biological functions ranging from stress responses to affective states. The putative transcriptional coregulator CREB3 regulatory factor (CREBRF) reduces glucocorticoid receptor levels in vitro, suggesting that CREBRF may impact behavioral and physiological outputs. In the present study, we examined adult male and female mice with global loss of CREBRF (CrebrfKO) for anxiety-like behaviors and circulating glucocorticoids in response to various acute stress conditions. Results demonstrate that both male and female CrebrfKO mice have preserved locomotor activity but reduced anxiety-like behaviors during the light-dark box and elevated plus maze. These behavioral phenotypes were associated with lower plasma corticosterone after restraint stress. Further studies using unhandled female mice also demonstrated a loss of the diurnal circulating corticosterone rhythm in CrebrfKO mice. These results suggest that CREBRF impacts anxiety-like behavior and circulating glucocorticoids in response to acute stressors and serves as a basis for future mechanistic studies to define the impact of CREBRF in glucocorticoid-associated behavioral and physiological responses.


Asunto(s)
Ansiedad/genética , Proteínas de Unión al ADN/genética , Glucocorticoides/sangre , Animales , Ansiedad/sangre , Conducta Animal/fisiología , Corticosterona/sangre , Regulación hacia Abajo/genética , Femenino , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico/sangre , Estrés Psicológico/genética
8.
Nutrients ; 12(10)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977395

RESUMEN

Sepsis is characterized by a dysregulated immune response to infection. Nutrition is important in the care of septic patients, but the effects of specific nutrients on inflammation in sepsis are not well defined. Our prior work has shown benefits from early enteral dextrose infusion in a preclinical endotoxemia model of sepsis. In the current study, we extend our initial work to examine the effects of dextrose infusions, varying by route of administration, on inflammation and glycemic control in a more clinically relevant and translational model of Klebsiella pneumoniae (KP) bacteremia. Ten-week old C57BL6/J male mice (n = 31) underwent the implantation of indwelling vascular catheters, followed by inoculation with oropharyngeal KP. The mice were randomized 24 h after inoculation to (1) intravenous (IV) dextrose, (2) enteral dextrose, or (3) enteral saline (control) to study the effects on systemic inflammation, hemodynamics, and glycemic control. At 72 h, 77% of the control mice died, whereas IV dextrose induced 100% mortality, associated with increased inflammation, hyperglycemia, and hypotension. Enteral dextrose reduced mortality to 27%, promoted euglycemia, and reduced inflammation compared to IV dextrose. We conclude, in a bacteremic model of sepsis, that enteral (but not IV) dextrose administration is protective, suggesting that the route of nutrient support influences inflammation in sepsis.


Asunto(s)
Glucosa/administración & dosificación , Glucosa/uso terapéutico , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Animales , Modelos Animales de Enfermedad , Control Glucémico , Hiperglucemia , Inflamación/tratamiento farmacológico , Klebsiella pneumoniae , Lesión Pulmonar , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/uso terapéutico , Sepsis/microbiología , Sepsis/mortalidad
9.
J Biol Chem ; 295(19): 6357-6371, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32205448

RESUMEN

Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC-treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 µm) and nitric oxide (100 µm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 µm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning.


Asunto(s)
Intoxicación por Monóxido de Carbono/metabolismo , Monóxido de Carbono/toxicidad , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , Neuroglobina/metabolismo , Animales , Intoxicación por Monóxido de Carbono/patología , Carboxihemoglobina/metabolismo , Humanos , Masculino , Ratones , Mitocondrias Cardíacas/patología , Mitocondrias Hepáticas/patología , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Consumo de Oxígeno/efectos de los fármacos , Ratas
10.
JPEN J Parenter Enteral Nutr ; 44(3): 541-547, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31148210

RESUMEN

BACKGROUND: Sepsis is characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection and affects over 1 million Americans annually. Loss of glycemic control in sepsis is associated with increased morbidity and mortality, and novel approaches are needed to promote euglycemia and improve outcomes in sepsis. Recent studies from our laboratory demonstrate that early low-level enteral dextrose infusion in septic mice attenuates the systemic inflammatory response and improves glycemic control by inducing intestine-derived incretin hormone secretion. AIM: The aim of the Study of Early Enteral Dextrose in Sepsis (SEEDS) is to test the effect of a 24-hour enteral dextrose infusion in critically ill septic patients as a therapeutic agent to decrease systemic inflammation and promote euglycemia. METHODS: SEEDS is a single-center, double-blind, randomized, controlled trial that will enroll 60 septic patients admitted to the intensive care units at the University of Pittsburgh Medical Center Health System in Pittsburgh. Participants will be randomized 1:1 to receive enteral dextrose (n = 30) or water (placebo, n = 30) infusion for 24 hours. The primary outcome is the circulating interleukin-6 level measured after the 24-hour infusion compared between dextrose and placebo groups. Secondary outcomes include postinfusion circulating insulin, incretin, and other proinflammatory cytokine levels, as well as incidence of hyperglycemia and hypoglycemia during the infusion period. DISCUSSION: This trial will characterize the effects of early enteral dextrose on endogenous endocrine pathways and the systemic inflammatory response in sepsis. The results of this trial will inform future larger interventional studies of early enteral nutrients in critically ill patients with sepsis.


Asunto(s)
Nutrición Enteral , Glucosa , Sepsis , Choque Séptico , Adolescente , Adulto , Animales , Método Doble Ciego , Femenino , Polipéptido Inhibidor Gástrico , Humanos , Ratones , Sepsis/tratamiento farmacológico
11.
J Clin Endocrinol Metab ; 104(11): 5274-5284, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31216011

RESUMEN

BACKGROUND: Sepsis, a complex disorder characterized by a dysregulated immune response to an inciting infection, affects over one million Americans annually. Dysglycemia during sepsis hospitalization confers increased risk of organ dysfunction and death, and novel targets for the treatment of sepsis and maintenance of glucose homeostasis are needed. Incretin hormones are secreted by enteroendocrine cells in response to enteral nutrients and potentiate insulin release from pancreatic ß cells in a glucose-dependent manner, thereby reducing the risk of insulin-induced hypoglycemia. Incretin hormones also reduce systemic inflammation in preclinical studies, but studies of incretins in the setting of sepsis are limited. METHODS: In this bench-to-bedside mini-review, we detail the evidence to support incretin hormones as a therapeutic target in patients with sepsis. We performed a PubMed search using the medical subject headings "incretins," "glucagon-like peptide-1," "gastric inhibitory peptide," "inflammation," and "sepsis." RESULTS: Incretin-based therapies decrease immune cell activation, inhibit proinflammatory cytokine release, and reduce organ dysfunction and mortality in preclinical models of sepsis. Several small clinical trials in critically ill patients have suggested potential benefit in glycemic control using exogenous incretin infusions, but these studies had limited power and were performed in mixed populations. Further clinical studies examining incretins specifically in septic populations are needed. CONCLUSIONS: Targeting the incretin hormone axis in sepsis may provide a means of not only promoting euglycemia in sepsis but also attenuating the proinflammatory response and improving clinical outcomes.


Asunto(s)
Incretinas/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Complicaciones de la Diabetes/inmunología , Modelos Animales de Enfermedad , Humanos , Incretinas/inmunología , Sepsis/complicaciones , Sepsis/inmunología , Investigación Biomédica Traslacional , Resultado del Tratamiento
13.
Sleep Breath ; 23(1): 333-339, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30159633

RESUMEN

PURPOSE: Patients with sickle cell disease (SCD) regularly experience abnormal sleep, characterized by frequent arousals and reduced total sleep time. However, obstructive sleep apnea syndrome (OSAS) is a common comorbidity of SCD, making it unclear whether the disease per se is impacting sleep, or sleep disruption is secondary to the presence of OSAS. Thus, we assessed sleep, independent of OSAS, using a mouse model of SCD. METHODS: Sleep was compared between 10-to-12-week-old Townes knockout-transgenic mice with the sickle cell phenotype SS (n = 6) and Townes mice with sickle cell trait AS (n = 6; control). The mice underwent chronic polysomnographic electrode implantation (4EEG/2EMG) to assess sleep architecture. RESULTS: The SS mice had significantly lower hemoglobin concentration compared to control AS mice (7.3 ± 1.3 vs. 12.9 ± 1.7 g/dL; p < 0.01), consistent with the expected SCD phenotype. SS mice exhibited significantly decreased total NREM sleep time (45.0 ± 0.7 vs. 53.0 ± 1.3% 24 h sleep time; p < 0.01), but no change in total REM sleep time compared to the AS mice. The SS mice took longer to resume sleep after a wake period compared to the AS mice (3.2 ± 0.3 min vs. 1.9 ± 0.2 min; p < 0.05). Unexpectedly, SS mice experienced fewer arousals compared to AS mice (19.0 ± 0.9 vs. 23.3 ± 2.1 arousals/h of sleep; p = 0.031). CONCLUSIONS: The presence of decreased total NREM sleep associated with reduced arousals, in the absence of OSAS, suggests a distinctive underlying sleep phenotype in a mouse model of SCD.


Asunto(s)
Anemia de Células Falciformes/genética , Modelos Animales de Enfermedad , Fenotipo , Apnea Obstructiva del Sueño/genética , Privación de Sueño/genética , Animales , Nivel de Alerta/genética , Hemoglobinometría , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Polisomnografía , Rasgo Drepanocítico/genética , Sueño de Onda Lenta/genética , Vigilia/genética
14.
PLoS One ; 13(12): e0208540, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532231

RESUMEN

The relationship between cardiovascular disease and abnormalities in sleep architecture is complex and bi-directional. Sleep disordered breathing (SDB) often confounds human studies examining sleep in the setting of heart failure, and the independent impact of isolated right or left heart failure on sleep is difficult to assess. We utilized an animal model of right heart failure using pulmonary artery banding (PAB) in mice to examine the causal effect of right heart failure on sleep architecture. Four weeks after PAB or sham (control) surgery, sleep was measured by polysomnography for 48 hours and right ventricular (RV) hypertrophy confirmed prior to sacrifice. PAB resulted in right ventricular hypertrophy based on a 30% increase in the Fulton Index (p < 0.01). After PAB, mice spent significantly more time in NREM sleep compared to the control group over a 24 hour period (53.5 ± 1.5% vs. 46.6 ± 1.4%; p < 0.01) and exhibited an inability to both cycle into REM sleep and decrease delta density across the light/sleep period. Our results support a phenotype of impaired sleep cycling and increased 'sleepiness' in a mouse model of RV dysfunction.


Asunto(s)
Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/fisiopatología , Somnolencia , Disfunción Ventricular Derecha/complicaciones , Animales , Presión Sanguínea , Oscuridad , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Sueño REM , Factores de Tiempo
15.
Am J Physiol Endocrinol Metab ; 315(5): E758-E770, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30086648

RESUMEN

Accumulation of myeloid cells in the liver, notably dendritic cells (DCs) and monocytes/macrophages (MCs), is a major component of the metainflammation of obesity. However, the mechanism(s) stimulating hepatic DC/MC infiltration remain ill defined. Herein, we addressed the hypothesis that adipose tissue (AT) free fatty acids (FFAs) play a central role in the initiation of hepatic DC/MC accumulation, using a number of mouse models of altered FFA supply to the liver. In two models of acute FFA elevation (lipid infusion and fasting) hepatic DC/MC and triglycerides (TGs) but not AT DC/MC were increased without altering plasma cytokines (PCs; TNFα and monocyte chemoattractant protein 1) and with variable effects on oxidative stress (OxS) markers. However, fasting in mice with profoundly reduced AT lipolysis (AT-specific deletion of adipose TG lipase; AAKO) failed to elevate liver DC/MC, TG, or PC, but liver OxS increased. Livers of obese AAKO mice that are known to be resistant to steatosis were similarly protected from inflammation. In high-fat feeding studies of 1, 3, 6, or 20-wk duration, liver DC/MC accumulation dissociated from PC and OxS but tracked with liver TGs. Furthermore, decreasing OxS by ~80% in obese mice failed to decrease liver DC/MC. Therefore, FFA and more specifically AT-derived FFA stimulate hepatic DC/MC accumulation, thus recapitulating the pathology of the obese liver. In a number of cases the effects of FFA can be dissociated from OxS and PC but match well with liver TG, a marker of FFA oversupply.


Asunto(s)
Tejido Adiposo/metabolismo , Ayuno/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Hígado/metabolismo , Células Mieloides/metabolismo , Animales , Citocinas/sangre , Dieta Alta en Grasa , Ácidos Grasos no Esterificados/farmacología , Lipasa/genética , Lipasa/metabolismo , Lipólisis/fisiología , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Triglicéridos/metabolismo
16.
Oxid Med Cell Longev ; 2018: 9649608, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29507654

RESUMEN

Although acute exposure to hypoxia can disrupt metabolism, longer-term exposure may normalize glucose homeostasis or even improve glucose disposal in the presence of obesity. We examined the effects of two-week exposure to room air (Air), continuous 10% oxygen (C10%), and 12 hr nocturnal periods of 10% oxygen (N10%) on glucose disposal, insulin responsiveness, and mitochondrial function in lean and obese C57BL/6J mice. Both C10% and N10% improved glucose disposal relative to Air in lean and obese mice without evidence of an increase in insulin responsiveness; however, only the metabolic improvements with N10% exposure occurred in the absence of confounding effects of weight loss. In lean mice, N10% exposure caused a decreased respiratory control ratio (RCR) and increased reactive oxygen species (ROS) production in the mitochondria of the muscle and liver compared to Air-exposed mice. In the absence of hypoxia, obese mice exhibited a decreased RCR in the muscle and increased ROS production in the liver compared to lean mice; however, any additional effects of hypoxia in the presence of obesity were minimal. Our data suggest that the development of mitochondrial inefficiency may contribute to metabolic adaptions to hypoxia, independent of weight, and metabolic adaptations to adiposity, independent of hypoxia.


Asunto(s)
Adaptación Fisiológica/fisiología , Glucosa/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Animales , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Transl Res ; 193: 1-12, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29222967

RESUMEN

Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis.


Asunto(s)
Endotoxemia/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Glucosa/metabolismo , Homeostasis , Incretinas/metabolismo , Inflamación/prevención & control , Animales , Péptido 1 Similar al Glucagón/fisiología , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Sci Transl Med ; 8(368): 368ra173, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27928027

RESUMEN

Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, with no available antidotal therapy. We introduce a potential treatment paradigm for CO poisoning, based on near-irreversible binding of CO by an engineered human neuroglobin (Ngb). Ngb is a six-coordinate hemoprotein, with the heme iron coordinated by two histidine residues. We mutated the distal histidine to glutamine (H64Q) and substituted three surface cysteines with less reactive amino acids to form a five-coordinate heme protein (Ngb-H64Q-CCC). This molecule exhibited an unusually high affinity for gaseous ligands, with a P50 (partial pressure of O2 at which hemoglobin is half-saturated) value for oxygen of 0.015 mmHg. Ngb-H64Q-CCC bound CO about 500 times more strongly than did hemoglobin. Incubation of Ngb-H64Q-CCC with 100% CO-saturated hemoglobin, either cell-free or encapsulated in human red blood cells, reduced the half-life of carboxyhemoglobin to 0.11 and 0.41 min, respectively, from ≥200 min when the hemoglobin or red blood cells were exposed only to air. Infusion of Ngb-H64Q-CCC to CO-poisoned mice enhanced CO removal from red blood cells, restored heart rate and blood pressure, increased survival, and was followed by rapid renal elimination of CO-bound Ngb-H64Q-CCC. Heme-based scavenger molecules with very high CO binding affinity, such as our mutant five-coordinate Ngb, are potential antidotes for CO poisoning by virtue of their ability to bind and eliminate CO.


Asunto(s)
Intoxicación por Monóxido de Carbono/diagnóstico , Eritrocitos/metabolismo , Globinas/genética , Globinas/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Animales , Presión Sanguínea , Encéfalo/metabolismo , Monóxido de Carbono/química , Carboxihemoglobina/genética , Gases , Ingeniería Genética/métodos , Hemodinámica , Humanos , Cinética , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuroglobina , Oxígeno/química , Presión , Unión Proteica , Proteínas Recombinantes/química
19.
Diabetes ; 65(5): 1283-96, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26868297

RESUMEN

Adaptive ß-cell replication occurs in response to increased metabolic demand during insulin resistance. The intracellular mediators of this compensatory response are poorly defined and their identification could provide significant targets for ß-cell regeneration therapies. Here we show that glucose and insulin in vitro and insulin resistance in vivo activate protein kinase C ζ (PKCζ) in pancreatic islets and ß-cells. PKCζ is required for glucose- and glucokinase activator-induced proliferation of rodent and human ß-cells in vitro. Furthermore, either kinase-dead PKCζ expression (KD-PKCζ) or disruption of PKCζ in mouse ß-cells blocks compensatory ß-cell replication when acute hyperglycemia/hyperinsulinemia is induced. Importantly, KD-PKCζ inhibits insulin resistance-mediated mammalian target of rapamycin (mTOR) activation and cyclin-D2 upregulation independent of Akt activation. In summary, PKCζ activation is key for early compensatory ß-cell replication in insulin resistance by regulating the downstream signals mTOR and cyclin-D2. This suggests that alterations in PKCζ expression or activity might contribute to inadequate ß-cell mass expansion and ß-cell failure leading to type 2 diabetes.


Asunto(s)
Ciclina D2/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Sobrepeso/metabolismo , Proteína Quinasa C/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Activación Enzimática , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Sobrepeso/patología , Sobrepeso/fisiopatología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/química , Proteína Quinasa C/genética , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Bancos de Tejidos
20.
Diabetes ; 65(4): 981-95, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26740601

RESUMEN

An important goal in diabetes research is to understand the processes that trigger endogenous ß-cell proliferation. Hyperglycemia induces ß-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces ß-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced ß-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal-related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced ß-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Animales , Proliferación Celular/genética , Células Cultivadas , Ciclina D2/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...