Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 62(24): 6553-6573, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35960688

RESUMEN

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 µM and 9.0 µM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 µM to 3.3 µM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Proteasas Similares a la Papaína de Coronavirus , Naftoquinonas , Inhibidores de Proteasas , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , COVID-19 , Simulación del Acoplamiento Molecular , Naftoquinonas/química , Naftoquinonas/farmacología , Papaína , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores
2.
PLoS Negl Trop Dis ; 12(10): e0006923, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30379807

RESUMEN

BACKGROUND: Angiostrongylus costaricensis is a relatively uncharacterized nematode that causes abdominal angiostrongyliasis in Latin America, a human parasitic disease. Currently, no effective pharmacological treatment for angiostrongyliasis exists. Peptidases are known to be druggable targets for a variety of diseases and are essential for several biological processes in parasites. Therefore, this study aimed to systematically characterize the peptidase activity of A. costaricensis in different developmental stages of this parasitic nematode. METHODOLOGY/PRINCIPAL FINDINGS: A library of diverse tetradecapeptides was incubated with cellular lysates from adult worms and from first-stage larvae (L1) and cleaved peptide products were identified by mass spectrometry. Lysates were also treated with class specific peptidase inhibitors to determine which enzyme class was responsible for the proteolytic activity. Peptidase activity from the four major mechanistic classes (aspartic, metallo, serine and cysteine) were detected in adult worm lysate, whereas aspartic, metallo and serine-peptidases were found in the larval lysates. In addition, the substrate specificity profile was found to vary at different pH values. CONCLUSIONS/SIGNIFICANCE: The proteolytic activities in adult worm and L1 lysates were characterized using a highly diversified library of peptide substrates and the activity was validated using a selection of fluorescent substrates. Taken together, peptidase signatures for different developmental stages of this parasite has improved our understanding of the disease pathogenesis and may be useful as potential drug targets or vaccine candidates.


Asunto(s)
Angiostrongylus/enzimología , Péptido Hidrolasas/análisis , Animales , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Larva/enzimología , Péptido Hidrolasas/química , Proteolisis , Especificidad por Sustrato
3.
Front Mol Biosci ; 5: 40, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29725596

RESUMEN

Cysteine proteases are widespread in all life kingdoms, being central to diverse physiological processes based on a broad range of substrate specificity. Paralogous Fasciola hepatica cathepsin L proteases are essential to parasite invasion, tissue migration and reproduction. In spite of similarities in their overall sequence and structure, these enzymes often exhibit different substrate specificity. These preferences are principally determined by the amino acid composition of the active site's S2 subsite (pocket) of the enzyme that interacts with the substrate P2 residue (Schetcher and Berger nomenclature). Although secreted FhCL1 accommodates aliphatic residues in the S2 pocket, FhCL2 is also efficient in cleaving proline in that position. To understand these differences, we engineered the FhCL1 S2 subsite at three amino acid positions to render it identical to that present in FhCL2. The substitutions did not produce the expected increment in proline accommodation in P2. Rather, they decreased the enzyme's catalytic efficiency toward synthetic peptides. Nonetheless, a change in the P3 specificity was associated with the mutation of Leu67 to Tyr, a hinge residue between the S2 and S3 subsites that contributes to the accommodation of Gly in S3. Molecular dynamic simulations highlighted changes in the spatial distribution and secondary structure of the S2 and S3 pockets of the mutant FhCL1 enzymes. The reduced affinity and catalytic efficiency of the mutant enzymes may be due to a narrowing of the active site cleft that hinders the accommodation of substrates. Because the variations in the enzymatic activity measured could not be exclusively allocated to those residues lining the active site, other more external positions might modulate enzyme conformation, and, therefore, catalytic activity.

4.
Mar Biotechnol (NY) ; 18(2): 201-14, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26613762

RESUMEN

Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Jugo Gástrico/química , Glicósido Hidrolasas/metabolismo , Nephropidae/enzimología , Péptido Hidrolasas/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Frío , Digestión/fisiología , Jugo Gástrico/enzimología , Expresión Génica , Glicósido Hidrolasas/genética , Anotación de Secuencia Molecular , Nephropidae/genética , Péptido Hidrolasas/genética , Proteolisis , Proteómica , Especificidad por Sustrato
5.
PLoS Negl Trop Dis ; 7(7): e2269, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23875031

RESUMEN

BACKGROUND: A family of secreted cathepsin L proteases with differential activities is essential for host colonization and survival in the parasitic flatworm Fasciola hepatica. While the blood feeding adult secretes predominantly FheCL1, an enzyme with a strong preference for Leu at the S2 pocket of the active site, the infective stage produces FheCL3, a unique enzyme with collagenolytic activity that favours Pro at P2. METHODOLOGY/PRINCIPAL FINDINGS: Using a novel unbiased multiplex substrate profiling and mass spectrometry methodology (MSP-MS), we compared the preferences of FheCL1 and FheCL3 along the complete active site cleft and confirm that while the S2 imposes the greatest influence on substrate selectivity, preferences can be indicated on other active site subsites. Notably, we discovered that the activity of FheCL1 and FheCL3 enzymes is very different, sharing only 50% of the cleavage sites, supporting the idea of functional specialization. We generated variants of FheCL1 and FheCL3 with S2 and S3 residues by mutagenesis and evaluated their substrate specificity using positional scanning synthetic combinatorial libraries (PS-SCL). Besides the rare P2 Pro preference, FheCL3 showed a distinctive specificity at the S3 pocket, accommodating preferentially the small Gly residue. Both P2 Pro and P3 Gly preferences were strongly reduced when Trp67 of FheCL3 was replaced by Leu, rendering the enzyme incapable of digesting collagen. In contrast, the inverse Leu67Trp substitution in FheCL1 only slightly reduced its Leu preference and improved Pro acceptance in P2, but greatly increased accommodation of Gly at S3. CONCLUSIONS/SIGNIFICANCE: These data reveal the significance of S2 and S3 interactions in substrate binding emphasizing the role for residue 67 in modulating both sites, providing a plausible explanation for the FheCL3 collagenolytic activity essential to host invasion. The unique specificity of FheCL3 could be exploited in the design of specific inhibitors selectively directed to specific infective stage parasite proteinases.


Asunto(s)
Catepsinas/metabolismo , Fasciola hepatica/enzimología , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Catepsinas/genética , Análisis Mutacional de ADN , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA