Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(23): 7375-7390, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37733052

RESUMEN

Production of microalgae is a potential technology for capturing and recycling carbon dioxide from cement kiln emissions. In this study, a process of selecting a suitable strain that would effectively utilize carbon dioxide and generate biomass was investigated. A down-selection screening method was applied to 28 strains isolated from the area surrounding a commercial cement plant. In laboratory-scale (1 L) continuous-mode chemostats, observed productivity was > 0.9 g L-1 d-1 for most strains studied. Chlorella sorokiniana (strain SMC-14M) appeared to be the most tolerant to cement kiln gas emissions in situ, delivered under control of a pH-stat system, and was down-selected to further investigate growth and biomass production at large-scale (1000 L) cultivation. Results demonstrated little variability in lipid, crude protein, and carbohydrate composition throughout growth between kiln-gas grown algal biomass and biomass produced with laboratory grade CO2. The growth rate at which the maximum quantity of CO2 from the emissions is recycled also produced the maximum amount of the targeted biomass components to increase commercial value of the biomass. An accumulation of some heavy metals throughout its growth demonstrates the necessity to monitor the biomass cultivated with industrial flue gases and to carefully consider the potential applications for this biomass; despite its other attractive nutritional properties. KEY POINTS: • Studied high biomass producing algal strains grown on CO2 from cement flue gas. • Chlorella sorokiniana SMC-14M grew well at large scale, in situ on cement flue gas. • Demonstrated the resulting commercial potential of the cultured algal biomass.


Asunto(s)
Chlorella , Microalgas , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Chlorella/metabolismo , Biomasa , Gases/metabolismo
2.
Plant Cell Rep ; 39(9): 1185-1197, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32638075

RESUMEN

KEY MESSAGE: A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.


Asunto(s)
Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Triticale/metabolismo , Brachypodium/genética , Cisteína , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/genética , Transporte de Proteínas , Triticale/citología , Triticale/genética
3.
Planta ; 245(2): 385-396, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27787603

RESUMEN

MAIN CONCLUSION: In this report, we demonstrate that Brachypodium distachyon could serve as a relatively high throughput in planta functional assay system for Triticeae anther-specific gene promoters. There remains a vast gap in our knowledge of the promoter cis-acting elements responsible for the transcriptional regulation of Triticeae anther-specific genes. In an attempt to identify conserved cis-elements, 14 pollen-specific and 8 tapetum-specific Triticeae putative promoter sequences were analyzed using different promoter sequence analysis tools. Several cis-elements were found to be enriched in these sequences and their possible role in gene expression regulation in the anther is discussed. Despite the fact that potential cis-acting elements can be identified within putative promoter sequence datasets, determining whether particular promoter sequences can in fact direct proper tissue-specific and developmental gene expression still needs to be confirmed via functional assays preferably performed in closely related plants. Transgenic functional assays with Triticeae species remain challenging and Brachypodium distachyon may represent a suitable alternative. The promoters of the triticale pollen-specific genes group 3 pollen allergen (PAL3) and group 4 pollen allergen (PAL4), as well as the tapetum-specific genes chalcone synthase-like 1 (CHSL1), from wheat and cysteine-rich protein 1 (CRP1) from triticale were fused to the green fluorescent protein gene (GFP) and analyzed in transgenic Brachypodium. This report demonstrates that this model species could serve to accelerate the functional analysis of Triticeae anther-specific gene promoters.


Asunto(s)
Brachypodium/genética , Polen/genética , Regiones Promotoras Genéticas , Aciltransferasas/genética , Aciltransferasas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Poaceae/genética , Polen/crecimiento & desarrollo
4.
Nat Prod Res ; 27(12): 1084-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22973805

RESUMEN

Methanolic extracts of some marine and freshwater microalgae were tested for their nitric oxide (NO) inhibitory activity on lipopolysaccharide-induced NO production in RAW264.7 macrophage cells. Among the tested extracts, Tetraselmis chui extract showed the strongest NO inhibitory activity, thus selected for further study. NO inhibitory activity guided isolation led to identification of two monogalactosyldiacylglycerols (MGDGs) (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetranoyl)-2-O-(4Z,7Z,10Z,13Z-hexadecatetranoyl)-3-O-ß-D-galactopyranosylglycerol (1) and (2S)-1-O-(9Z,12Z,15Z-octadecatrinoyl)-2-O-(4Z,7Z,10Z,13Z-hexadecatetranoyl)-3-O-ß-D-galactopyranosylglycerol (2) from the MeOH extract of T. chui. The stereo-chemistry of 1 was elucidated by classical degradation method. MGDGs 1 and 2 showed strong NO inhibitory activity compared to N(G)-methyl-L-arginine acetate salt, a well known NO inhibitor used as a positive control. Isolated MGDGs suppressed NO production through down-regulation of inducible NO synthase protein. A structure activity relationship study suggested that the polyunsaturated fatty acids of the MGDGs are responsible for NO inhibition. Moreover, increasing unsaturation on the fatty acid side chains enhanced the NO inhibitory potency of the MGDGs.


Asunto(s)
Chlorophyta/química , Galactolípidos/química , Galactolípidos/farmacología , Macrófagos/efectos de los fármacos , Óxido Nítrico/metabolismo , Animales , Arginina/análogos & derivados , Línea Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Insaturados/química , Galactósidos/química , Galactósidos/farmacología , Glicerol/análogos & derivados , Glicerol/química , Glicerol/farmacología , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Microalgas/química , Estructura Molecular , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Relación Estructura-Actividad
5.
Nat Prod Res ; 27(11): 1028-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22703524

RESUMEN

Chemical investigation of the freshwater microalgae Chlorella sorokiniana led to the isolation of a new monogalactosylmonoacylglycerol, namely, (2S)-1-O-(7Z,10Z-hexadecadienoyl)-3-O-ß-D-galactopyranosylglycerol (1) together with a known glycolipid (2S)-1-O-(7Z,10Z,13Z-hexadecatrienoyl)-3-O-ß-D-galactopyranosylglycerol (2). Both monogalactosylmonoacylglycerols showed dose-dependent nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced NO production in RAW264.7 macrophage cells suggesting their possible use as anti-inflammatory agents.


Asunto(s)
Chlorella/química , Glicerol/farmacología , Óxido Nítrico/antagonistas & inhibidores , Agua Dulce , Glicerol/química
6.
Appl Plant Sci ; 1(4)2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25202539

RESUMEN

PREMISE OF THE STUDY: Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. • METHODS: Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar), Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper), Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir), Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. • RESULTS: Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. • DISCUSSION: Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.

7.
Anal Bioanal Chem ; 401(8): 2609-16, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21915640

RESUMEN

Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions. Herein, lipid extracts from microalgae were directly analyzed by ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS) using a benchtop Orbitrap mass spectrometer. Phospholipids, glycolipids, and TAGs were analyzed in the same chromatographic run, using a combination of accurate mass and diagnostic fragment ions for identification. Using this approach, greater than 100 unique TAGs were identified over the six algal strains studied and TAG profiles were obtained to assess their potential for biofuel applications. Under the growth conditions employed, Botryococcus braunii and Scenedesmus obliquus yielded the most comprehensive TAG profile with a high abundance of TAGs containing oleic acid.


Asunto(s)
Biocombustibles/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Microalgas/química , Triglicéridos/análisis , Triglicéridos/química , Triglicéridos/aislamiento & purificación
8.
Photosynth Res ; 109(1-3): 231-47, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21461850

RESUMEN

There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.


Asunto(s)
Biocombustibles , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Residuos Industriales , Microalgas/crecimiento & desarrollo , Nitrógeno/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Biodegradación Ambiental , Biomasa , Biotecnología , Conservación de los Recursos Naturales , Lípidos/biosíntesis , Microalgas/metabolismo , Eliminación de Residuos Líquidos
9.
Plant Cell Rep ; 27(9): 1441-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18592248

RESUMEN

A novel anther-specific chalcone synthase-like gene, TaCHSL1, was isolated and characterized. The TaCHSL1 transcript was detected only within the tapetum during the "free" and early vacuolated microspore stages in both wheat and triticale. Sequence analysis indicated that the 41.8 kDa TaCHSL1 deduced protein belongs to a small distinct group of type III polyketide synthases that includes angiosperm and gymnosperm orthologs shown to be anther-specific. TaCHSL1 sequence characteristics and conservation, as well as its restricted expression pattern, point to a distinct and important biochemical role in developing anthers.


Asunto(s)
Aciltransferasas/genética , Grano Comestible/genética , Flores/genética , Triticum/genética , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario/genética , Flores/enzimología , Genes de Plantas , Datos de Secuencia Molecular , ARN de Planta/genética , Alineación de Secuencia , Triticum/enzimología
10.
Tree Physiol ; 27(12): 1649-59, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17938097

RESUMEN

We describe the proteomic identification of two pathogenesis-related group 5 (PR-5) proteins, an acidic thaumatin-like protein (TLP) and a basic TLP isolated from the pollination drop of hybrid yew (Taxus x media Rehder). The basic TLP (TxmTLPb) was the most abundant protein in the yew pollination drop based on protein spot size after two-dimensional electrophoresis. The acidic TLP (TxmTLPa) is also a major protein component of the yew ovular secretion and appears to be encoded by a number of mRNAs transcribed from a TLP gene family that has undergone limited sequence divergence. We have sequenced five acidic TLP-encoding cDNAs (TxmTLPa-1,2,3,4 and 5) isolated from the yew ovule that vary from each other by no more than five out of 233 amino acid residues in their predicted protein sequences. All of the cDNA variants encode TLPs possessing the 16 conserved cysteine residues and five charged amino acid side chains associated with antifungal activity. Amplification of genomic DNA with TxmTLPa primers indicated that at least 11 acidic TLPs with highly similar amino acid sequences may be expressed in yew tissues. Antibodies against TLPs confirmed the identity of TxmTLPa and TxmTLPb in the yew pollination drop and detected TLPs in the ovular secretions of four other species from three other conifer families. Our results suggest that TLPs are a conserved component of conifer ovular secretions and are involved in broad spectrum pathogen defence of ovules.


Asunto(s)
Proteínas de Plantas/metabolismo , Polinización , Isoformas de Proteínas/metabolismo , Taxus/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Hibridación Genética , Immunoblotting , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteómica/métodos , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Taxus/genética , Taxus/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...