Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
1.
J Neuropathol Exp Neurol ; 83(2): 94-106, 2024 01 19.
Article En | MEDLINE | ID: mdl-38164986

This research assesses the capability of texture analysis (TA) derived from high-resolution (HR) T2-weighted magnetic resonance imaging to identify primary sequelae following 1-5 hours of controlled cortical impact mild or severe traumatic brain injury (TBI) to the left frontal cortex (focal impact) and secondary (diffuse) sequelae in the right frontal cortex, bilateral corpus callosum, and hippocampus in rats. The TA technique comprised first-order (histogram-based) and second-order statistics (including gray-level co-occurrence matrix, gray-level run length matrix, and neighborhood gray-level difference matrix). Edema in the left frontal impact region developed within 1 hour and continued throughout the 5-hour assessments. The TA features from HR images confirmed the focal injury. There was no significant difference among radiomics features between the left and right corpus callosum or hippocampus from 1 to 5 hours following a mild or severe impact. The adjacent corpus callosum region and the distal hippocampus region (s), showed no diffuse injury 1-5 hours after mild or severe TBI. These results suggest that combining HR images with TA may enhance detection of early primary and secondary sequelae following TBI.


Brain Injuries, Traumatic , Brain Injuries , Rats , Animals , Brain/pathology , Magnetic Resonance Imaging/methods , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain Injuries/diagnostic imaging , Brain Injuries/pathology , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology
2.
Neuropsychologia ; 191: 108728, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37939875

To understand the neural basis of episodic memory it is necessary to appreciate the significance of the fornix. This pathway creates a direct link between those temporal lobe and medial diencephalic sites responsible for anterograde amnesia. A collaboration with Andrew Mayes made it possible to recruit and scan 38 patients with colloid cysts in the third ventricle, a condition associated with variable fornix damage. Complete fornix loss was seen in three patients, who suffered chronic long-term memory problems. Volumetric analyses involving all 38 patients then revealed a highly consistent relationship between mammillary body volume and the recall of episodic memory. That relationship was not seen for working memory or tests of recognition memory. Three different methods all supported a dissociation between recollective-based recognition (impaired) and familiarity-based recognition (spared). This dissociation helped to show how the mammillary body-anterior thalamic nuclei axis, as well as the hippocampus, is vital for episodic memory yet is not required for familiarity-based recognition. These findings set the scene for a reformulation of temporal lobe and diencephalic amnesia. In this revised model, these two regions converge on overlapping cortical areas, including retrosplenial cortex. The united actions of the hippocampal formation and the anterior thalamic nuclei on these cortical areas enable episodic memory encoding and consolidation, impacting on subsequent recall.


Memory, Episodic , Humans , Diencephalon/diagnostic imaging , Hippocampus/diagnostic imaging , Amnesia/diagnostic imaging , Mental Recall , Mammillary Bodies/diagnostic imaging
3.
Prog Brain Res ; 274(1): 1-30, 2022.
Article En | MEDLINE | ID: mdl-36167445

Recent advances in memory research within psychology and neuroscience have contributed to a shift from examining memory through an individualistic lens towards a growing recognition of potential social and collective influences on mnemonic processes. This shift is prominently illustrated by continuing research on collective memory. Through a scoping literature review, we identify three crucial components defining collective memory: memories held in common across individuals within a social group, which are centrally important to group identity, and which impact significantly on perceived group agency. This review attempts to distil and organize empirical evidence into (i) neural, (ii) psychological, and (iii) social foundations of collective memory, while considering the reflexive relationship between common memory, identity, and agency (CIA). We conceptualize collective memory as based on neuropsychological substrates, influenced by social processes, and extended to societal, historical, and political domains, driven by human sociality. To engage the complexity of, and shed light on, numerous remaining questions surrounding collective memory, future research should embrace a collaborative, interdisciplinary approach focused on issues of common memory, identity, and identity.


Memory , Neurosciences , Humans , Social Behavior
4.
Prog Brain Res ; 274(1): xiii-xiv, 2022.
Article En | MEDLINE | ID: mdl-36167454
5.
Eur J Neurosci ; 56(10): 5869-5887, 2022 11.
Article En | MEDLINE | ID: mdl-36089888

As the functional properties of a cortical area partly reflect its thalamic inputs, the present study compared collateral projections arising from various rostral thalamic nuclei that terminate across prefrontal (including anterior cingulate) and retrosplenial areas in the rat brain. Two retrograde tracers, fast blue and cholera toxin B, were injected in pairs to different combinations of cortical areas. The research focused on the individual anterior thalamic nuclei, including the interanteromedial nucleus, nucleus reuniens and the laterodorsal nucleus. Of the principal anterior thalamic nuclei, only the anteromedial nucleus contained neurons reaching both the anterior cingulate cortex and adjacent cortical areas (prefrontal or retrosplenial), though the numbers were modest. For these same cortical pairings (medial prefrontal/anterior cingulate and anterior cingulate/retrosplenial), the interanteromedial nucleus and nucleus reuniens contained slightly higher proportions of bifurcating neurons (up to 11% of labelled cells). A contrasting picture was seen for collaterals reaching different areas within retrosplenial cortex. Here, the anterodorsal nucleus, typically provided the greatest proportion of bifurcating neurons (up to 15% of labelled cells). While individual neurons that terminate in different retrosplenial areas were also found in the other thalamic nuclei, they were infrequent. Consequently, these thalamo-cortical projections predominantly arise from separate populations of neurons with discrete cortical termination zones, consistent with the transmission of segregated information and influence. Overall, two contrasting medial-lateral patterns of collateral projections emerged, with more midline nuclei, for example, nucleus reuniens and the interoanteromedial nucleus innervating prefrontal areas, while more dorsal and lateral anterior thalamic collaterals innervated retrosplenial cortex.


Gyrus Cinguli , Thalamic Nuclei , Rats , Animals , Thalamic Nuclei/physiology , Thalamus , Cerebral Cortex/physiology , Midline Thalamic Nuclei/physiology , Neural Pathways/physiology
6.
Neurosci Biobehav Rev ; 140: 104813, 2022 09.
Article En | MEDLINE | ID: mdl-35940310

After more than 80 years, Papez serial circuit remains a hugely influential concept, initially for emotion, but in more recent decades, for memory. Here, we show how this circuit is anatomically and mechanistically naïve as well as outdated. We argue that a new conceptualisation is necessitated by recent anatomical and functional findings that emphasize the more equal, working partnerships between the anterior thalamic nuclei and the hippocampal formation, along with their neocortical interactions in supporting, episodic memory. Furthermore, despite the importance of the anterior thalamic for mnemonic processing, there is growing evidence that these nuclei support multiple aspects of cognition, only some of which are directly associated with hippocampal function. By viewing the anterior thalamic nuclei as a multifunctional hub, a clearer picture emerges of extra-hippocampal regions supporting memory. The reformulation presented here underlines the need to retire Papez serially processing circuit.


Anterior Thalamic Nuclei , Memory, Episodic , Attention , Hippocampus , Humans , Limbic System , Neural Pathways
7.
Eur J Neurosci ; 56(2): 3825-3838, 2022 07.
Article En | MEDLINE | ID: mdl-35658087

Place cells are cells that exhibit location-dependent responses; they have mostly been studied in the hippocampus. Place cells have also been reported in the rat claustrum, an underexplored paracortical region with extensive corto-cortical connectivity. It has been hypothesised that claustral neuronal responses are anchored to cortical visual inputs. We show rat claustral place cells remap when visual inputs are eliminated from the environment, and that this remapping is NMDA-receptor-dependent. Eliminating visual input decreases claustral delta-band oscillatory activity, increases theta-band oscillatory activity, and increases simultaneously recorded visual cortical activity. We conclude that, like the hippocampus, claustral place field remapping might be mediated by NMDA receptor activity, and is modulated by visual cortical inputs.


Claustrum , Place Cells , Visual Cortex , Animals , Basal Ganglia/physiology , Rats , Receptors, N-Methyl-D-Aspartate
8.
Nat Rev Neurosci ; 23(8): 505-516, 2022 08.
Article En | MEDLINE | ID: mdl-35478245

Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.


Anterior Thalamic Nuclei , Memory, Episodic , Brain , Hippocampus , Humans , Temporal Lobe
9.
eNeuro ; 8(5)2021.
Article En | MEDLINE | ID: mdl-34301721

Both nucleus reuniens and the anterior thalamic nuclei are densely interconnected with medial cortical and hippocampal areas, connections that reflect their respective contributions to learning and memory. To better appreciate their comparative roles, pairs of different retrograde tracers were placed in these two thalamic sites in adult rats. Both thalamic sites receive modest cortical inputs from layer V that contrasted with much denser projections from layer VI. Despite frequent overlap in layer VI, ventral prefrontal and anterior cingulate inputs to nucleus reuniens were concentrated in the deepest sublayer (VIb). Meanwhile, inputs to the anterior thalamic nuclei originated more evenly from both sublayers VIa and VIb, with the result that they were often located more superficially than the projections to nucleus reuniens. Again, while the many hippocampal (subiculum) neurons projecting to nucleus reuniens and the anterior thalamic nuclei were partially intermingled within the deep cellular parts of the subiculum, cells projecting to nucleus reuniens consistently tended to lie even deeper (i.e., immediately adjacent to the alveus). Variable numbers of double-labeled cells were present in those cortical and subicular portions where the two cell populations intermingled, though they remained in a minority. Our data also show how projections to these two thalamic sites are organized in opposing dorsal/ventral and rostral/caudal gradients across both the cortex and hippocampal formation. While the anterior thalamic nuclei are preferentially innervated by dorsal cortical sites, more ventral frontal sites preferentially reach nucleus reuniens. These anatomic differences may underpin the complementary cognitive functions of these two thalamic areas.


Anterior Thalamic Nuclei , Midline Thalamic Nuclei , Animals , Hippocampus , Limbic System , Neural Pathways , Rats
10.
J Neurosci ; 41(30): 6511-6525, 2021 07 28.
Article En | MEDLINE | ID: mdl-34131030

Just as hippocampal lesions are principally responsible for "temporal lobe" amnesia, lesions affecting the anterior thalamic nuclei seem principally responsible for a similar loss of memory, "diencephalic" amnesia. Compared with the former, the causes of diencephalic amnesia have remained elusive. A potential clue comes from how the two sites are interconnected, as within the hippocampal formation, only the subiculum has direct, reciprocal connections with the anterior thalamic nuclei. We found that both permanent and reversible anterior thalamic nuclei lesions in male rats cause a cessation of subicular spatial signaling, reduce spatial memory performance to chance, but leave hippocampal CA1 place cells largely unaffected. We suggest that a core element of diencephalic amnesia stems from the information loss in hippocampal output regions following anterior thalamic pathology.SIGNIFICANCE STATEMENT At present, we know little about interactions between temporal lobe and diencephalic memory systems. Here, we focused on the subiculum, as the sole hippocampal formation region directly interconnected with the anterior thalamic nuclei. We combined reversible and permanent lesions of the anterior thalamic nuclei, electrophysiological recordings of the subiculum, and behavioral analyses. Our results were striking and clear: following permanent thalamic lesions, the diverse spatial signals normally found in the subiculum (including place cells, grid cells, and head-direction cells) all disappeared. Anterior thalamic lesions had no discernible impact on hippocampal CA1 place fields. Thus, spatial firing activity within the subiculum requires anterior thalamic function, as does successful spatial memory performance. Our findings provide a key missing part of the much bigger puzzle concerning why anterior thalamic damage is so catastrophic for spatial memory in rodents and episodic memory in humans.


Amnesia/physiopathology , Anterior Thalamic Nuclei/physiology , Hippocampus/physiology , Neural Pathways/physiology , Spatial Memory/physiology , Animals , Male , Rats
11.
Cereb Cortex ; 31(4): 2169-2186, 2021 03 05.
Article En | MEDLINE | ID: mdl-33251536

In a changing environment, organisms need to decide when to select items that resemble previously rewarded stimuli and when it is best to switch to other stimulus types. Here, we used chemogenetic techniques to provide causal evidence that activity in the rodent anterior cingulate cortex and its efferents to the anterior thalamic nuclei modulate the ability to attend to reliable predictors of important outcomes. Rats completed an attentional set-shifting paradigm that first measures the ability to master serial discriminations involving a constant stimulus dimension that reliably predicts reinforcement (intradimensional-shift), followed by the ability to shift attention to a previously irrelevant class of stimuli when reinforcement contingencies change (extradimensional-shift). Chemogenetic disruption of the anterior cingulate cortex (Experiment 1) as well as selective disruption of anterior cingulate efferents to the anterior thalamic nuclei (Experiment 2) impaired intradimensional learning but facilitated 2 sets of extradimensional-shifts. This pattern of results signals the loss of a corticothalamic system for cognitive control that preferentially processes stimuli resembling those previously associated with reward. Previous studies highlight a separate medial prefrontal system that promotes the converse pattern, that is, switching to hitherto inconsistent predictors of reward when contingencies change. Competition between these 2 systems regulates cognitive flexibility and choice.


Anterior Thalamic Nuclei/metabolism , Attention/physiology , Gyrus Cinguli/metabolism , Optogenetics/methods , Reward , Adenoviridae/metabolism , Animals , Anterior Thalamic Nuclei/chemistry , Anterior Thalamic Nuclei/drug effects , Attention/drug effects , Discrimination Learning/drug effects , Discrimination Learning/physiology , Gyrus Cinguli/chemistry , Gyrus Cinguli/drug effects , Injections, Intraventricular , Male , Neural Pathways/chemistry , Neural Pathways/drug effects , Neural Pathways/metabolism , Piperazines/administration & dosage , Piperazines/analysis , Piperazines/metabolism , Rats
12.
Neurosci Biobehav Rev ; 119: 268-280, 2020 12.
Article En | MEDLINE | ID: mdl-33069688

Two thalamic sites are of especial significance for understanding hippocampal - diencephalic interactions: the anterior thalamic nuclei and nucleus reuniens. Both nuclei have dense, direct interconnections with the hippocampal formation, and both are directly connected with many of the same cortical and subcortical areas. These two thalamic sites also contain neurons responsive to spatial stimuli while lesions within these two same areas can disrupt spatial learning tasks that are hippocampal dependent. Despite these many similarities, closer analysis reveals important differences in the details of their connectivity and the behavioural impact of lesions in these two thalamic sites. These nuclei play qualitatively different roles that largely reflect the contrasting relative importance of their medial frontal cortex interactions (nucleus reuniens) compared with their retrosplenial, cingulate, and mammillary body interactions (anterior thalamic nuclei). While the anterior thalamic nuclei are critical for multiple aspects of hippocampal spatial encoding and performance, nucleus reuniens contributes, as required, to aid cognitive control and help select correct from competing memories.


Anterior Thalamic Nuclei , Midline Thalamic Nuclei , Hippocampus , Humans , Mammillary Bodies , Neural Pathways , Neurons
13.
J Neurosci ; 40(36): 6978-6990, 2020 09 02.
Article En | MEDLINE | ID: mdl-32753513

The hippocampus is essential for normal memory but does not act in isolation. The anterior thalamic nuclei may represent one vital partner. Using DREADDs, the behavioral consequences of transiently disrupting anterior thalamic function were examined, followed by inactivation of the dorsal subiculum. Next, the anterograde transport of an adeno-associated virus expressing DREADDs was paired with localized intracerebral infusions of a ligand to target specific input pathways. In this way, the direct projections from the anterior thalamic nuclei to the dorsal hippocampal formation were inhibited, followed by separate inhibition of the dorsal subiculum projections to the anterior thalamic nuclei. To assay spatial working memory, all animals performed a reinforced T-maze alternation task, then a more challenging version that nullifies intramaze cues. Across all four experiments, deficits emerged on the spatial alternation task that precluded the use of intramaze cues. Inhibiting dorsal subiculum projections to the anterior thalamic nuclei produced the severest spatial working memory deficit. This deficit revealed the key contribution of dorsal subiculum projections to the anteromedial and anteroventral thalamic nuclei for the processing of allocentric information, projections not associated with head-direction information. The overall pattern of results provides consistent causal evidence of the two-way functional significance of direct hippocampal-anterior thalamic interactions for spatial processing. At the same time, these findings are consistent with hypotheses that these same, reciprocal interactions underlie the common core symptoms of temporal lobe and diencephalic anterograde amnesia.SIGNIFICANCE STATEMENT It has long been conjectured that the anterior thalamic nuclei might be key partners with the hippocampal formation and that, respectively, they are principally responsible for diencephalic and temporal lobe amnesia. However, direct causal evidence for this functional relationship is lacking. Here, we examined the behavioral consequences of transiently silencing the direct reciprocal interconnections between these two brain regions on tests of spatial learning. Disrupting information flow from the hippocampal formation to the anterior thalamic nuclei and vice versa impaired performance on tests of spatial learning. By revealing the conjoint importance of hippocampal-anterior thalamic pathways, these findings help explain why pathology in either the medial diencephalon or the medial temporal lobes can result in profound anterograde amnesic syndromes.


Hippocampus/physiology , Spatial Learning , Thalamic Nuclei/physiology , Animals , Male , Neural Pathways/physiology , Rats
14.
Front Neural Circuits ; 13: 52, 2019.
Article En | MEDLINE | ID: mdl-31447653

Memory research remains focused on just a few brain structures-in particular, the hippocampal formation (the hippocampus and entorhinal cortex). Three key discoveries promote this continued focus: the striking demonstrations of enduring anterograde amnesia after bilateral hippocampal damage; the realization that synapses in the hippocampal formation are plastic e.g., when responding to short bursts of patterned stimulation ("long-term potentiation" or LTP); and the discovery of a panoply of spatially-tuned cells, principally surveyed in the hippocampal formation (place cells coding for position; head-direction cells, providing compass-like information; and grid cells, providing a metric for 3D space). Recent anatomical, behavioral, and electrophysiological work extends this picture to a growing network of subcortical brain structures, including the anterior thalamic nuclei, rostral midline thalamic nuclei, and the claustrum. There are, for example, spatially-tuned cells in all of these regions, including cells with properties similar to place cells of the hippocampus proper. These findings add new perspectives to what had been originally been proposed-but often overlooked-half a century ago: that damage to an extended network of structures connected to the hippocampal formation results in diencephalic amnesia. We suggest these new findings extend spatial signaling in the brain far beyond the hippocampal formation, with profound implications for theories of the neural bases of spatial and mnemonic functions.


Cognition/physiology , Entorhinal Cortex/physiology , Hippocampus/physiology , Long-Term Potentiation/physiology , Memory/physiology , Animals , Humans
15.
Front Neuroanat ; 13: 53, 2019.
Article En | MEDLINE | ID: mdl-31213993

The claustrum is a subcortical nucleus that exhibits dense connectivity across the neocortex. Considerable recent progress has been made in establishing its genetic and anatomical characteristics, however, a core, contentious issue that regularly presents in the literature pertains to the rostral extent of its anatomical boundary. The present study addresses this issue in the rat brain. Using a combination of immunohistochemistry and neuroanatomical tract tracing, we have examined the expression profiles of several genes that have previously been identified as exhibiting a differential expression profile in the claustrum relative to the surrounding cortex. The expression profiles of parvalbumin (PV), crystallin mu (Crym), and guanine nucleotide binding protein (G protein), gamma 2 (Gng2) were assessed immunohistochemically alongside, or in combination with cortical anterograde, or retrograde tracer injections. Retrograde tracer injections into various thalamic nuclei were used to further establish the rostral border of the claustrum. Expression of all three markers delineated a nuclear boundary that extended considerably (∼500 µm) beyond the anterior horn of the neostriatum. Cortical retrograde and anterograde tracer injections, respectively, revealed distributions of cortically-projecting claustral neurons and cortical efferent inputs to the claustrum that overlapped with the gene marker-derived claustrum boundary. Finally, retrograde tracer injections into the thalamus revealed insular cortico-thalamic projections encapsulating a claustral area with strongly diminished cell label, that extended rostral to the striatum.

16.
J Neurosci ; 39(34): 6696-6713, 2019 08 21.
Article En | MEDLINE | ID: mdl-31235646

Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.


Amnesia/physiopathology , Diencephalon/physiopathology , Hippocampus/physiopathology , Mammillary Bodies/physiopathology , Neural Pathways/physiopathology , Thalamus/physiopathology , Amnesia/diagnostic imaging , Animals , Diencephalon/diagnostic imaging , Electroencephalography , Gamma Rhythm , Hippocampus/diagnostic imaging , Locomotion , Magnetic Resonance Imaging , Male , Mammillary Bodies/diagnostic imaging , Maze Learning , Neural Pathways/diagnostic imaging , Neuronal Plasticity , Rats , Sleep, REM , Spatial Memory , Thalamus/diagnostic imaging , Theta Rhythm
17.
Sci Rep ; 9(1): 2865, 2019 02 27.
Article En | MEDLINE | ID: mdl-30814651

Perimeters are an important part of the environment, delimiting its geometry. Here, we investigated how perimeters (vertical walls; vertical drops) affect neuronal responses in the rostral thalamus (the anteromedial and parataenial nuclei in particular). We found neurons whose firing patterns reflected the presence of walls and drops, irrespective of arena shape. Their firing patterns were stable across multiple sleep-wake cycles and were independent of ambient lighting conditions. Thus, rostral thalamic nuclei may participate in spatial representation by encoding the perimeters of environments.


Anterior Thalamic Nuclei , Midline Thalamic Nuclei , Neurons , Synaptic Transmission/physiology , Animals , Anterior Thalamic Nuclei/cytology , Anterior Thalamic Nuclei/physiology , Male , Midline Thalamic Nuclei/cytology , Midline Thalamic Nuclei/physiology , Neurons/cytology , Neurons/physiology , Rats
18.
Eur J Neurosci ; 49(12): 1649-1672, 2019 06.
Article En | MEDLINE | ID: mdl-30633830

Nucleus reuniens receives dense projections from both the hippocampus and the frontal cortices. Reflecting these connections, this nucleus is thought to enable executive functions, including those involving spatial learning. The mammillary bodies, which also support spatial learning, again receive dense hippocampal inputs, as well as lighter projections from medial frontal areas. The present study, therefore, compared the sources of these inputs to nucleus reuniens and the mammillary bodies. Retrograde tracer injections in rats showed how these two diencephalic sites receive projections from separate cell populations, often from adjacent layers in the same cortical areas. In the subiculum, which projects strongly to both sites, the mammillary body inputs originate from a homogenous pyramidal cell population in more superficial levels, while the cells that target nucleus reuniens most often originate from cells positioned at a deeper level. In these deeper levels, a more morphologically diverse set of subiculum cells contributes to the thalamic projection, especially at septal levels. While both diencephalic sites also receive medial frontal inputs, those to nucleus reuniens are especially dense. The densest inputs to the mammillary bodies appear to arise from the dorsal peduncular cortex, where the cells are mostly separate from deeper neurons that project to nucleus reuniens. Again, in those other cortical regions that innervate both nucleus reuniens and the mammillary bodies, there was no evidence of collateral projections. The findings support the notion that these diencephalic nuclei represent components of distinct, but complementary, systems that support different aspects of cognition.


Cerebral Cortex/cytology , Mammillary Bodies/cytology , Midline Thalamic Nuclei/cytology , Neurons/cytology , Animals , Male , Neuroanatomical Tract-Tracing Techniques , Rats
19.
Wellcome Open Res ; 4: 196, 2019.
Article En | MEDLINE | ID: mdl-32055710

There is a dearth of freely-available, standardised open source analysis tools available for the analysis of neuronal signals recorded in vivo in the freely-behaving animal. In response, we have developed a freely-available, open-source toolbox, NeuroChaT ( Neuron Characterisation Toolbox), specifically addressing this lacuna. Although we have particularly emphasised single unit analyses for spatial coding, NeuroChaT also characterises rhythmic properties of units and their dynamics associated with local field potential signals. NeuroChaT was developed using Python and facilitates a complete pipeline from automation of analysis to producing and managing publication-quality figures. Additionally, we have adopted a platform-independent format (Hierarchical Data Format version 5) for storing recorded and analysed data. By providing an easy-to-use software package, we aim to simplify the adoption of standardised analyses for behavioural neurophysiology and facilitate open data sharing and collaboration between laboratories.

20.
Prog Brain Res ; 239: 229-252, 2018.
Article En | MEDLINE | ID: mdl-30314568

Depression is the leading cause of disability worldwide, with over 300 million people affected. Almost all currently available antidepressant treatments target monoamine neurotransmitter systems and have a delayed onset of action up to several weeks that can be associated with low rates of treatment response. The endogenous opioid system has been identified as a potential target for the development of novel antidepressants due to its high opioid receptor concentrations in central limbic areas that are also implicated in physiological processes including regulation of mood and emotion. Genetic depletion, pharmacological manipulation, and preclinical models have been widely used to characterize the role of opioid transmission in depressive states. Neuroimaging studies have been carried out in clinical populations to investigate opioid transmission in mood and emotion in an attempt to identify those regional anatomical and functional brain changes that are associated with depression. Great insight has been provided into the cerebral structural and functional changes associated with depression but there remains a need to tie the functional theories of depression to anatomical localization and further neuroimaging studies are best placed to do this.


Analgesics, Opioid/therapeutic use , Antidepressive Agents/therapeutic use , Brain/drug effects , Depressive Disorder, Major/drug therapy , Analgesics, Opioid/pharmacology , Antidepressive Agents/pharmacology , Brain/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Humans , Neuroimaging
...