Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
PLoS One ; 19(5): e0292978, 2024.
Article En | MEDLINE | ID: mdl-38728307

Endosalpingiosis (ES) and endometriosis (EM) refer to the growth of tubal and endometrial epithelium respectively, outside of their site of origin. We hypothesize that uterine secretome factors drive ectopic growth. To test this, we developed a mouse model of ES and EM using tdTomato (tdT) transgenic fluorescent mice as donors. To block implantation factors, progesterone knockout (PKO) tdT mice were created. Fluorescent lesions were present after oviduct implantation with and without WT endometrium. Implantation was increased (p<0.05) when tdt oviductal tissue was implanted with endometrium compared to oviductal tissue alone. Implantation was reduced (p<0.0005) in animals implanted with minced tdT oviductal tissue with PKO tdT endometrium compared to WT endometrium. Finally, oviductal tissues was incubated with and without a known implantation factor, leukemia inhibitory factor (LIF) prior to and during implantation. LIF promoted lesion implantation. In conclusion, endometrial derived implantation factors, such as LIF, are necessary to initiate ectopic tissue growth. We have developed an animal model of ectopic growth of gynecologic tissues in a WT mouse which will potentially allow for development of new prevention and treatment modalities.


Endometriosis , Endometrium , Uterus , Animals , Female , Mice , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Uterus/metabolism , Endometrium/metabolism , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Secretome/metabolism , Mice, Transgenic , Disease Models, Animal , Fallopian Tubes/metabolism , Progesterone/metabolism , Mice, Knockout , Embryo Implantation/physiology
2.
Am J Obstet Gynecol ; 230(2): 251.e1-251.e17, 2024 Feb.
Article En | MEDLINE | ID: mdl-37598997

BACKGROUND: Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE: Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN: To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS: We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-ß signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-ß gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION: These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.


MicroRNAs , Zika Virus Infection , Zika Virus , Pregnancy , Humans , Female , Animals , Mice , Zika Virus/genetics , Zika Virus Infection/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Fetal Growth Retardation/metabolism , Enoxacin/metabolism , Placenta/metabolism , Gene Expression Profiling , RNA-Induced Silencing Complex/metabolism , Transforming Growth Factors/metabolism , Trophoblasts/metabolism
3.
Am J Obstet Gynecol ; 217(2): 218.e1-218.e15, 2017 08.
Article En | MEDLINE | ID: mdl-28373017

BACKGROUND: We have recently shown in both non-human primates and in rodents that fetal and neonatal hepatic expression of the circadian transcription factor, Npas2, is modulated by a high fat maternal diet and plays a critical role in establishing life-long metabolic homeostasis. Similarly, we and others have also established the importance of the maternal and early postnatal diet on establishment of the early gut microbiome. OBJECTIVE: We hypothesized that altered circadian gene expression solely in the neonatal liver would result in gut microbiome dysbiosis, especially with diet-induced metabolic stress (ie, restricted feeding). Using a murine model in which we conditionally knock out Npas2 in the neonatal liver, we aimed to determine the role of the circadian machinery in gut dysbiosis with restricted feeding. STUDY DESIGN: We collected fecal samples from liver Npas2 conditional knockout (n = 11) and wild-type (n = 13) reproductive-aged mice before (study day 0) and after the restricted feeding study (study day 17). Extracted DNA was sequenced using the MiSeq Illumina platform using primers specific for the V4 region of the 16S ribosomal DNA gene. The resulting sequences were quality filtered, aligned, and assigned taxonomy. Principal coordinate analysis was performed on unweighted and weighted UniFrac distances between samples with a permutation analysis of variance to assess clustering significance between groups. Microbial taxa that significantly differ between groups of interest was determined using linear discriminate analysis effect size and randomForrest. RESULTS: Principal coordinate analysis performed on weighted UniFrac distances between male conditional knockout and wild-type cohorts revealed that the gut microbiome of the mice did not differ by genotype at the start of the restricted feeding study but did differ by virtue of genotype at the end of the study (P = .001). Moreover, these differences could be at least partially attributed to restricted feeding-associated alterations in relative abundance of the Bacteroides genus, which has been implicated as crucial to establishing a healthy gut microbiome early in development. CONCLUSION: Here we have provided an initial key insight into the interplay between neonatal establishment of the peripheral circadian clock in the liver and the ability of the gut microbiome to respond to dietary and metabolic stress. Because Npas2 expression in the liver is a target of maternal high-fat diet-induced metabolic perturbations during fetal development, we speculate that these findings have potential implications in the long-term metabolic health of their offspring.


Basic Helix-Loop-Helix Transcription Factors/genetics , Diet , Gastrointestinal Microbiome/genetics , Nerve Tissue Proteins/genetics , Animals , Animals, Newborn , Circadian Rhythm , Female , Gene Expression Regulation , Male , Mice
4.
Am J Obstet Gynecol ; 214(5): 625.e1-625.e11, 2016 05.
Article En | MEDLINE | ID: mdl-26880735

BACKGROUND: The H19/IGF2 imprinted loci have attracted recent attention because of their role in cellular differentiation and proliferation, heritable gene regulation, and in utero or early postnatal growth and development. Expression from the imprinted H19/IGF2 locus involves a complex interplay of 3 means of epigenetic regulation: proper establishment of DNA methylation, promoter occupancy of CTCF, and expression of microRNA-675. We have demonstrated previously in a multigenerational rat model of intrauterine growth restriction the epigenetic heritability of adult metabolic syndrome in a F2 generation. We have further demonstrated abrogation of the F2 adult metabolic syndrome phenotype with essential nutrient supplementation of intermediates along the 1-carbon pathway and shown that alterations in the metabolome precede the adult onset of metabolic syndrome. The upstream molecular and epigenomic mediators underlying these observations, however, have yet to be elucidated fully. OBJECTIVE: In the current study, we sought to characterize the impact of the intrauterine growth-restricted lineage and essential nutrient supplementation on both levels and molecular mediators of H19 and IGF2 gene expression in the F2 generation. STUDY DESIGN: F2 intrauterine growth-restricted and sham lineages were obtained by exposing P1 (grandmaternal) pregnant dams to bilateral uterine artery ligation or sham surgery at gestational day 19.5. F1 pups were allocated to the essential nutrient supplemented or control diet at postnatal day 21, and bred at 6-7 weeks of age. Hepatic tissues from the resultant F2 offspring at birth and at weaning (day 21) were obtained. Bisulfite modification and sequencing was employed for methylation analysis. H19 and IGF2 expression was measured by quantitative polymerase chain reaction. Promoter occupancy was quantified by the use of chromatin immunoprecipitation, or ChIP, against CTCF insulator proteins. RESULTS: Growth-restricted F2 on control diet demonstrated significant down-regulation in H19 expression compared with sham lineage (0.7831 vs 1.287; P < .05); however, essential nutrient supplementation diet abrogates this difference (4.995 vs 5.100; P > .05). Conversely, Igf2 was up-regulated by essential nutrient supplemented diet on the sham lineage (2.0 fold, P = .01), an effect that was not observed in the growth restricted offspring. A significant differential methylation was observed in the promoter region of region H19 among the intrauterine growth-restricted lineage (18% vs 25%; P < .05) on a control diet, whereas the essential nutrient supplemented diet was alternately associated with hypermethylation in both lineages (sham: 50%; intrauterine growth restriction: 84%, P < .05). Consistent with essential nutrient supplementation impacting the epigenome, a decrease of CTCF promoter occupancy was observed in CTCF4 of the growth restricted lineage (2.45% vs 0.56%; P < .05) on the control diet, an effect that was repressed with essential nutrient supplementation. CONCLUSION: Heritable growth restriction is associated with changes in H19 gene expression; these changes are reversible with diet supplementation to favorably impact adult metabolic syndrome.


Fetal Growth Retardation/genetics , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , RNA, Long Noncoding/genetics , Animals , CCCTC-Binding Factor , Chromatin Immunoprecipitation , DNA Methylation , Dietary Supplements , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Insulin-Like Growth Factor II/metabolism , Metabolic Syndrome/prevention & control , Models, Animal , Pregnancy , Prenatal Exposure Delayed Effects/prevention & control , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/metabolism , Rats, Sprague-Dawley , Repressor Proteins/metabolism , Up-Regulation
5.
Mol Genet Metab ; 110(3): 378-87, 2013 Nov.
Article En | MEDLINE | ID: mdl-24067359

In our primate model of maternal high fat diet exposure, we have described that fetal epigenomic modifications to the peripheral circadian Npas2 are associated with persistent alterations in fetal hepatic metabolism and non-alcoholic fatty liver. As the interaction of circadian response with metabolism is not well understood, we employed a murine knockout model to characterize the molecular mechanisms with which Npas2 reprograms the fetal hepatic metabolic response. cDNA was generated from Npas2-/- and +/+ (wild type) livers at day 2 (newborn) and at 25 weeks (adult) of life. Newborn samples were analyzed by exon array (n = 3/cohort). Independent pathway analysis software determined that the primary dysregulated pathway(s) in the Npas2-/- animals uniformly converged on lipid metabolism. Of particular interest, Ppargc1a, which integrates circadian and metabolism pathways, was significantly (p < .01) over expressed in newborn (1.7 fold) and adult (1.8 fold) Npas2-/- animals. These findings are consistent with an essential role for Npas2 in programming the peripheral circadian response and hepatic metabolism, which has not been previously described.


Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Metabolic Networks and Pathways , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Animals , Circadian Rhythm/genetics , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Liver/metabolism , Mice , Mice, Knockout , Reproducibility of Results , Signal Transduction
6.
Mol Hum Reprod ; 18(1): 14-21, 2012 Jan.
Article En | MEDLINE | ID: mdl-21911476

Nearly 7% of men are afflicted by male infertility worldwide, and genetic factors are suspected to play a significant role in the majority of these patients. Although sperm morphology is an important parameter measured in the semen analysis, only a few genetic causes of teratozoospermia are currently known. The objective of this study was to define the association between alterations in the genes encoding the Golgi-associated PDZ- and coiled-coil motif containing protein (GOPC), the protein interacting with C kinase 1 (PICK1) and the acrosomal protein zona pellucida binding protein 1 (ZPBP1/sp38) with abnormal sperm head morphology in infertile men. Previous reports demonstrated that mice lacking Gopc, Pick1 and Zpbp1 are infertile due to abnormal head morphology. Herein, using our validated RNA-based method, we studied spermatozoal cDNA encoding the human GOPC, PICK1 and ZPBP1 genes in 381 teratozoospermic and 240 controls patients via direct sequencing. Among these genes, we identified missense and splicing mutations in the sperm cDNA encoding ZPBP1 in 3.9% (15/381) of men with abnormal sperm head morphology. These mutations were not observed in 240 matched controls and the dbSNP database (χ(2) = 9.3, P = 0.002). In contrast, statistically significant and functionally relevant mutations were not discovered in the GOPC and PICK1 genes. In our study ZPBP1 mutations are associated with abnormal sperm head morphology, defined according to strict criteria, resembling the mouse Zpbp1 null phenotype. We hypothesize that missense mutations exert a dominant-negative effect due to altered ZPBP1 protein folding and protein:protein interactions in the acrosome.


Egg Proteins/metabolism , Infertility, Male/genetics , Membrane Proteins/metabolism , Mutation , Sperm Head/pathology , Acrosome/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Egg Proteins/genetics , Golgi Matrix Proteins , Humans , Male , Membrane Proteins/genetics , Membrane Transport Proteins , Mice , Molecular Sequence Data , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Sequence Alignment
...