Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
2.
Bio Protoc ; 13(17): e4812, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37727868

The centrosome governs many pan-cellular processes including cell division, migration, and cilium formation. However, very little is known about its cell type-specific protein composition and the sub-organellar domains where these protein interactions take place. Here, we outline a protocol for the spatial interrogation of the centrosome proteome in human cells, such as those differentiated from induced pluripotent stem cells (iPSCs), through co-immunoprecipitation of protein complexes around selected baits that are known to reside at different structural parts of the centrosome, followed by mass spectrometry. The protocol describes expansion and differentiation of human iPSCs to dorsal forebrain neural progenitors and cortical projection neurons, harvesting and lysis of cells for protein isolation, co-immunoprecipitation with antibodies against selected bait proteins, preparation for mass spectrometry, processing the mass spectrometry output files using MaxQuant software, and statistical analysis using Perseus software to identify the enriched proteins by each bait. Given the large number of cells needed for the isolation of centrosome proteins, this protocol can be scaled up or down by modifying the number of bait proteins and can also be carried out in batches. It can potentially be adapted for other cell types, organelles, and species as well.

3.
ACS Nano ; 17(1): 735-742, 2023 Jan 10.
Article En | MEDLINE | ID: mdl-36546693

Emergent magnetism in van der Waals materials offers exciting opportunities in fabricating atomically thin spintronic devices. One pertinent obstacle has been the low transition temperatures (Tc) inherent to these materials, precluding room temperature applications. Here, we show that large structural gradients found in highly strained nanoscale wrinkles in Cr2Ge2Te6 (CGT) lead to significant increases of Tc. Magnetic force microscopy was utilized in characterizing multiple strained CGT nanostructures leading to experimental evidence of elevated Tc, depending on the strain percentage estimated from finite element analysis. Our findings are further supported by ab initio and DFT studies of the strained material, which indicates that strain directly augments the ferromagnetic coupling between Cr atoms in CGT, influenced by superexchange interaction; this provides strong insight into the mechanism of the enhanced magnetism and Tc.

4.
Science ; 376(6599): eabf9088, 2022 06 17.
Article En | MEDLINE | ID: mdl-35709258

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.


Centrosome , Neural Stem Cells , Neurogenesis , Neurons , Periventricular Nodular Heterotopia , Protein Interaction Maps , Alternative Splicing , Animals , Brain/abnormalities , Centrosome/metabolism , Humans , Induced Pluripotent Stem Cells , Mice , Microtubules/metabolism , Neurons/metabolism , Periventricular Nodular Heterotopia/metabolism , Proteome/metabolism , RNA Splicing Factors/metabolism , Transcription Factors/metabolism
5.
Nat Commun ; 12(1): 6298, 2021 11 02.
Article En | MEDLINE | ID: mdl-34728600

Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs' anchoring and migration within the human brain. We propose that its temporal expression influences NPCs' delamination, corticogenesis and gyrification extrinsically.


Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Cerebral Cortex/cytology , Extracellular Vesicles/metabolism , Induced Pluripotent Stem Cells/cytology , Neocortex/cytology , Neural Stem Cells/cytology , Neuroglia/metabolism , Animals , Cell Differentiation , Cerebral Cortex/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Mice , Mice, Inbred C57BL , Models, Animal , Neocortex/metabolism , Neural Stem Cells/metabolism
6.
BMC Biol ; 18(1): 42, 2020 04 22.
Article En | MEDLINE | ID: mdl-32321486

BACKGROUND: Many long noncoding RNAs (lncRNAs) have been implicated in general and cell type-specific molecular regulation. Here, we asked what underlies the fundamental basis for the seemingly random appearance of nuclear lncRNA condensates in cells, and we sought compounds that can promote the disintegration of lncRNA condensates in vivo. RESULTS: As a basis for comparing lncRNAs and cellular properties among different cell types, we screened lncRNAs in human pluripotent stem cells (hPSCs) that were differentiated to an atlas of cell lineages. We found that paraspeckles, which form by aggregation of the lncRNA NEAT1, are scaled by the size of the nucleus, and that small DNA-binding molecules promote the disintegration of paraspeckles and other lncRNA condensates. Furthermore, we found that paraspeckles regulate the differentiation of hPSCs. CONCLUSIONS: Positive correlation between the size of the nucleus and the number of paraspeckles exist in numerous types of human cells. The tethering and structure of paraspeckles, as well as other lncRNAs, to the genome can be disrupted by small molecules that intercalate in DNA. The structure-function relationship of lncRNAs that regulates stem cell differentiation is likely to be determined by the dynamics of nucleus size and binding site accessibility.


Cell Differentiation , Pluripotent Stem Cells/physiology , RNA, Long Noncoding/metabolism , Cell Nucleus/genetics , Cell Nucleus/physiology , DNA/genetics , DNA/physiology , Humans
7.
EMBO Rep ; 21(5): e48204, 2020 05 06.
Article En | MEDLINE | ID: mdl-32207244

During embryonic development, excitatory projection neurons migrate in the cerebral cortex giving rise to organised layers. Periventricular heterotopia (PH) is a group of aetiologically heterogeneous disorders in which a subpopulation of newborn projection neurons fails to initiate their radial migration to the cortex, ultimately resulting in bands or nodules of grey matter lining the lateral ventricles. Although a number of genes have been implicated in its cause, currently they only satisfactorily explain the pathogenesis of the condition for 50% of patients. Novel gene discovery is complicated by the extreme genetic heterogeneity recently described to underlie its cause. Here, we study the neurodevelopmental role of endothelin-converting enzyme-2 (ECE2) for which two biallelic variants have been identified in two separate patients with PH. Our results show that manipulation of ECE2 levels in human cerebral organoids and in the developing mouse cortex leads to ectopic localisation of neural progenitors and neurons. We uncover the role of ECE2 in neurogenesis, and mechanistically, we identify its involvement in the generation and secretion of extracellular matrix proteins in addition to cytoskeleton and adhesion.


Neurogenesis , Periventricular Nodular Heterotopia , Cell Movement/genetics , Cerebral Cortex , Female , Humans , Neurogenesis/genetics , Neurons , Pregnancy
8.
Hum Mutat ; 41(5): 865-883, 2020 05.
Article En | MEDLINE | ID: mdl-32108395

The X-linked filaminopathies represent a diverse group of clinical conditions, all caused by variants in the gene FLNA. FLNA encodes the widely expressed actin binding protein, filamin A that has multiple roles during embryonic development including cell migration, mechanical sensing, and cell signaling. In this review, we discuss the 10 distinct X-linked filaminopathy conditions that between them affect almost all organ systems, including the brain, skeleton, heart, and skin, highlighting the critical role of this protein in human development. We review each of the phenotypes and discuss their pathogenesis, where known. Assigning pathogenicity to variants in FLNA can prove difficult, especially for missense variants and small indels, in-part because of the X-linked nature of the phenotypes, the overlap of phenotypic features between conditions, and poor understanding of the function of certain protein domains. We outline here approaches to characterize phenotypes, highlight hotspot regions within FLNA commonly mutated in these conditions, and approaches to resolving some variants of uncertain significance.


Filamins/genetics , Genes, X-Linked , Genetic Association Studies , Genetic Predisposition to Disease , Muscular Dystrophies/diagnosis , Muscular Dystrophies/etiology , Mutation , Phenotype , Alleles , Diagnosis, Differential , Facies , Filamins/metabolism , Gain of Function Mutation , Gene Expression Regulation , Genetic Testing , Genetic Variation , Humans , Male , Muscular Dystrophies/metabolism , Organ Specificity/genetics , Radiography , Signal Transduction
9.
PLoS One ; 14(11): e0224402, 2019.
Article En | MEDLINE | ID: mdl-31697704

PURPOSE: To comprehensively assess the Randot Preschool stereo test in young children, including testability, normative values, test/retest reliability and sensitivity and specificity for detecting binocular vision disorders. METHODS: We tested 1005 children aged 2-11 years with the Randot Preschool stereo test, plus a cover/uncover test to detect heterotropia. Monocular visual acuity was assessed in both eyes using Keeler Crowded LogMAR visual acuity test for children aged 4 and over. RESULTS: Testability was very high: 65% in two-year-olds, 92% in three-year-olds and ~100% in older children. Normative values: In 389 children aged 2-5 with apparently normal vision, 6% of children scored nil (stereoblind). In those who obtained a threshold, the mean log threshold was 2.06 log10 arcsec, corresponding to 114 arcsec, and the median threshold was 100 arcsec. Most older children score 40 arcsec, the best available score. We found a small sex difference, with girls scoring slightly but significantly better. Test/retest reliability: ~99% for obtaining any score vs nil. Agreement between stereo thresholds is poor in children aged 2-5; 95% limit of agreement = 0.7 log10 arcsec: five-fold change in stereo threshold may occur without any change in vision. In children over 5, the test essentially acts only as a binary classifier since almost all non-stereoblind children score 40 arcsec. Specificity (true negative rate): >95%. Sensitivity (true positive rate): poor, <50%, i.e. around half of children with a demonstrable binocular vision abnormality score well on the Randot Preschool. CONCLUSIONS: The Randot Preschool is extremely accessible for even very young children, and is very reliable at classifying children into those who have any stereo vision vs those who are stereoblind. However, its ability to quantify stereo vision is limited by poor repeatability in children aged 5 and under, and a very limited range of scores relevant to children aged over 5.


Strabismus/diagnosis , Vision Disorders/diagnosis , Vision Tests/methods , Vision, Binocular/physiology , Aged , Child , Child, Preschool , Depth Perception/physiology , Female , Humans , Male , Physical Examination , Strabismus/physiopathology , Vision Disorders/physiopathology , Visual Acuity/physiology
10.
Nat Med ; 25(4): 561-568, 2019 04.
Article En | MEDLINE | ID: mdl-30858616

Malformations of the human cortex represent a major cause of disability1. Mouse models with mutations in known causal genes only partially recapitulate the phenotypes and are therefore not unlimitedly suited for understanding the molecular and cellular mechanisms responsible for these conditions2. Here we study periventricular heterotopia (PH) by analyzing cerebral organoids derived from induced pluripotent stem cells (iPSCs) of patients with mutations in the cadherin receptor-ligand pair DCHS1 and FAT4 or from isogenic knockout (KO) lines1,3. Our results show that human cerebral organoids reproduce the cortical heterotopia associated with PH. Mutations in DCHS1 and FAT4 or knockdown of their expression causes changes in the morphology of neural progenitor cells and result in defective neuronal migration dynamics only in a subset of neurons. Single-cell RNA-sequencing (scRNA-seq) data reveal a subpopulation of mutant neurons with dysregulated genes involved in axon guidance, neuronal migration and patterning. We suggest that defective neural progenitor cell (NPC) morphology and an altered navigation system in a subset of neurons underlie this form of PH.


Cell Movement , Cerebrum/pathology , Neurons/pathology , Organoids/pathology , Periventricular Nodular Heterotopia/pathology , Cadherin Related Proteins , Cadherins/genetics , Cell Line , Humans , Infant, Newborn , Mutation/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Time-Lapse Imaging , Tumor Suppressor Proteins/genetics
11.
Cell Rep ; 25(10): 2729-2741.e6, 2018 12 04.
Article En | MEDLINE | ID: mdl-30517861

The mammalian neocortex has undergone remarkable changes through evolution. A consequence of such rapid evolutionary events could be a trade-off that has rendered the brain susceptible to certain neurodevelopmental and neuropsychiatric conditions. We analyzed the exomes of 65 patients with the structural brain malformation periventricular nodular heterotopia (PH). De novo coding variants were observed in excess in genes defining a transcriptomic signature of basal radial glia, a cell type linked to brain evolution. In addition, we located two variants in human isoforms of two genes that have no ortholog in mice. Modulating the levels of one of these isoforms for the gene PLEKHG6 demonstrated its role in regulating neuroprogenitor differentiation and neuronal migration via RhoA, with phenotypic recapitulation of PH in human cerebral organoids. This suggests that this PLEKHG6 isoform is an example of a primate-specific genomic element supporting brain development.


Cell Movement , Guanine Nucleotide Exchange Factors/metabolism , Neurogenesis , Neurons/cytology , Neurons/metabolism , Alleles , Animals , Base Sequence , Brain/embryology , Brain/metabolism , Exome/genetics , Gene Expression Regulation , Genome , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Infant, Newborn , Male , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neuroglia/metabolism , Organoids/embryology , Primates , Protein Isoforms/metabolism , Species Specificity , rhoA GTP-Binding Protein/metabolism
12.
PLoS Genet ; 14(5): e1007281, 2018 05.
Article En | MEDLINE | ID: mdl-29738522

Periventricular nodular heterotopia (PVNH) is a malformation of cortical development commonly associated with epilepsy. We exome sequenced 202 individuals with sporadic PVNH to identify novel genetic risk loci. We first performed a trio-based analysis and identified 219 de novo variants. Although no novel genes were implicated in this initial analysis, PVNH cases were found overall to have a significant excess of nonsynonymous de novo variants in intolerant genes (p = 3.27x10-7), suggesting a role for rare new alleles in genes yet to be associated with the condition. Using a gene-level collapsing analysis comparing cases and controls, we identified a genome-wide significant signal driven by four ultra-rare loss-of-function heterozygous variants in MAP1B, including one de novo variant. In at least one instance, the MAP1B variant was inherited from a parent with previously undiagnosed PVNH. The PVNH was frontally predominant and associated with perisylvian polymicrogyria. These results implicate MAP1B in PVNH. More broadly, our findings suggest that detrimental mutations likely arising in immediately preceding generations with incomplete penetrance may also be responsible for some apparently sporadic diseases.


Genetic Predisposition to Disease/genetics , Loss of Function Mutation , Microtubule-Associated Proteins/genetics , Periventricular Nodular Heterotopia/genetics , Brain/abnormalities , Brain/diagnostic imaging , Female , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Exome Sequencing/methods
13.
Front Cell Neurosci ; 12: 57, 2018.
Article En | MEDLINE | ID: mdl-29593499

Disorders of neuronal mispositioning during brain development are phenotypically heterogeneous and their genetic causes remain largely unknown. Here, we report biallelic variants in a Hippo signaling factor-MOB2-in a patient with one such disorder, periventricular nodular heterotopia (PH). Genetic and cellular analysis of both variants confirmed them to be loss-of-function with enhanced sensitivity to transcript degradation via nonsense mediated decay (NMD) or increased protein turnover via the proteasome. Knockdown of Mob2 within the developing mouse cortex demonstrated its role in neuronal positioning. Cilia positioning and number within migrating neurons was also impaired with comparable defects detected following a reduction in levels of an upstream modulator of Mob2 function, Dchs1, a previously identified locus associated with PH. Moreover, reduced Mob2 expression increased phosphorylation of Filamin A, an actin cross-linking protein frequently mutated in cases of this disorder. These results reveal a key role for Mob2 in correct neuronal positioning within the developing cortex and outline a new candidate locus for PH development.

14.
Am J Hum Genet ; 96(4): 623-30, 2015 Apr 02.
Article En | MEDLINE | ID: mdl-25817014

Robinow syndrome (RS) is a phenotypically and genetically heterogeneous condition that can be caused by mutations in genes encoding components of the non-canonical Wnt signaling pathway. In contrast, germline mutations that act to increase canonical Wnt signaling lead to distinctive osteosclerotic phenotypes. Here, we identified de novo frameshift mutations in DVL1, a mediator of both canonical and non-canonical Wnt signaling, as the cause of RS-OS, an RS subtype involving osteosclerosis, in three unrelated individuals. The mutations all delete the DVL1 C terminus and replace it, in each instance, with a novel, highly basic sequence. We showed the presence of mutant transcript in fibroblasts from one individual with RS-OS and demonstrated unimpaired protein stability with transfected GFP-tagged constructs bearing a frameshift mutation. In vitro TOPFlash assays, in apparent contradiction to the osteosclerotic phenotype, revealed that the mutant allele was less active than the wild-type allele in the canonical Wnt signaling pathway. However, when the mutant and wild-type alleles were co-expressed, canonical Wnt activity was 2-fold higher than that in the wild-type construct alone. This work establishes that DVL1 mutations cause a specific RS subtype, RS-OS, and that the osteosclerosis associated with this subtype might be the result of an interaction between the wild-type and mutant alleles and thus lead to elevated canonical Wnt signaling.


Adaptor Proteins, Signal Transducing/genetics , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Dwarfism/genetics , Dwarfism/pathology , Frameshift Mutation/genetics , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Osteosclerosis/genetics , Phosphoproteins/genetics , Urogenital Abnormalities/genetics , Urogenital Abnormalities/pathology , Wnt Signaling Pathway/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dishevelled Proteins , Green Fluorescent Proteins/metabolism , Humans , Phosphoproteins/metabolism , Phosphorylation
15.
Biochim Biophys Acta ; 1839(1): 50-61, 2014 Jan.
Article En | MEDLINE | ID: mdl-24321385

Runx1 is a transcription factor essential for definitive hematopoiesis. In all vertebrates, the Runx1 gene is transcribed from two promoters: a proximal promoter (P2), and a distal promoter (P1). We previously found that runx1 expression in a specific hematopoietic cell population in zebrafish embryos depends on cohesin. Here we show that zebrafish runx1 is directly bound by cohesin and CCCTC binding factor (CTCF) at the P1 and P2 promoters, and within the intron between P1 and P2. Cohesin initiates expression of runx1 in the posterior lateral mesoderm and influences promoter use, while CTCF represses its expression in the newly emerging cells of the tail bud. The intronic binding sites for cohesin and CTCF coincide with histone modifications that confer enhancer-like properties, and two of the cohesin/CTCF sites behaved as insulators in an in vivo assay. The identified cohesin and CTCF binding sites are likely to be cis-regulatory elements (CREs) for runx1 since they also recruit RNA polymerase II (RNAPII). CTCF depletion excluded RNAPII from two intronic CREs but not the promoters of runx1. We propose that cohesin and CTCF have distinct functions in the regulation of runx1 during zebrafish embryogenesis, and that these regulatory functions are likely to involve runx1 intronic CREs. Cohesin (but not CTCF) depletion enhanced RUNX1 expression in a human leukemia cell line, suggesting conservation of RUNX1 regulation through evolution.


Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Repressor Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish/growth & development , Animals , CCCTC-Binding Factor , Cell Line, Tumor , Embryo, Nonmammalian , Embryonic Development , Gene Expression Regulation, Developmental , Humans , Mesoderm , Promoter Regions, Genetic , Zebrafish/genetics , Cohesins
16.
J Am Soc Nephrol ; 24(9): 1347-56, 2013 Sep.
Article En | MEDLINE | ID: mdl-23949797

The ability to reprogram fully differentiated cells into a pluripotent embryonic state, termed induced pluripotent stem cells (iPSCs), has been met with great excitement. iPSC technology has advanced the fundamental study of disease modeling with the potential for cell-replacement therapy, especially in the neuronal and cardiac fields. However, renal medicine as of yet has not benefited from similar advancements. This review summarizes the unique characteristics of iPSCs and their potential applications for modeling kidney disease. Pioneering such endeavors could yield constructs that recapitulate disease phenotypes, open avenues for more targeted drug development, and potentially serve as replenishable sources for replacement of kidney cells in the setting of human disease.


Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Kidney Diseases/therapy , Kidney/cytology , Precision Medicine/trends , Animals , Humans , Induced Pluripotent Stem Cells/physiology , Kidney/physiology , Mice , Models, Animal , Models, Biological , Regeneration/physiology , Regenerative Medicine/trends , Xenopus
17.
J Diabetes Res ; 2013: 165327, 2013.
Article En | MEDLINE | ID: mdl-23671854

This review compares two novel polygenic mouse models of type 2 diabetes (T2D), TALLYHO/JngJ and NONcNZO10/LtJ, and contrasts both with the well-known C57BLKS/J-Lepr(db) (db/db) monogenic diabesity model. We posit that the new polygenic models are more representative of the "garden variety" obesity underlying human T2D in terms of their polygenetic rather than monogenic etiology. Moreover, the clinical phenotypes in these new models are less extreme, for example, more moderated development of obesity coupled with less extreme endocrine disturbances. The more progressive development of obesity produces a maturity-onset development of hyperglycemia in contrast to the juvenile-onset diabetes observed in the morbidly obese db/db model. Unlike the leptin receptor-deficient db/db models with central leptin resistance, the new models develop a progressive peripheral leptin resistance and are able to maintain reproductive function. Although the T2D pathophysiology in both TALLYHO/JngJ and NONcNZO10/LtJ is remarkably similar, their genetic etiologies are clearly different, underscoring the genetic heterogeneity underlying T2D in humans.

18.
Ecol Lett ; 13(8): 1008-18, 2010 Aug 01.
Article En | MEDLINE | ID: mdl-20545732

Invasive species are regarded as one of the top five drivers of the global extinction crisis. In response, extreme measures have been applied in an attempt to control or eradicate invasives, with little success overall. We tested the idea that state shifts to invasive dominance are symptomatic of losses in ecosystem resilience, due to the suppression of apex predators. This concept was investigated in Australia where the high rate of mammalian extinctions is largely attributed to the destructive influence of invasive species. Intensive pest control is widely applied across the continent, simultaneously eliminating Australia's apex predator, the dingo (Canis lupus dingo). We show that predator management accounts for shifts between two main ecosystem states. Lethal control fractures dingo social structure and leads to bottom-up driven increases in invasive mesopredators and herbivores. Where control is relaxed, dingoes re-establish top-down regulation of ecosystems, allowing for the recovery of biodiversity and productivity.


Food Chain , Predatory Behavior , Wolves/physiology , Animals , Australia , Biodiversity , Mammals/physiology , Models, Biological , Population Density , Population Dynamics
19.
PLoS One ; 4(9): e6861, 2009 Sep 02.
Article En | MEDLINE | ID: mdl-19724642

Population control of socially complex species may have profound ecological implications that remain largely invisible if only their abundance is considered. Here we discuss the effects of control on a socially complex top-order predator, the dingo (Canis lupus dingo). Since European occupation of Australia, dingoes have been controlled over much of the continent. Our aim was to investigate the effects of control on their abundance and social stability. We hypothesized that dingo abundance and social stability are not linearly related, and proposed a theoretical model in which dingo populations may fluctuate between three main states: (A) below carrying capacity and socially fractured, (B) above carrying capacity and socially fractured, or (C) at carrying capacity and socially stable. We predicted that lethal control would drive dingoes into the unstable states A or B, and that relaxation of control would allow recovery towards C. We tested our predictions by surveying relative abundance (track density) and indicators of social stability (scent-marking and howling) at seven sites in the arid zone subject to differing degrees of control. We also monitored changes in dingo abundance and social stability following relaxation and intensification of control. Sites where dingoes had been controlled within the previous two years were characterized by low scent-marking activity, but abundance was similar at sites with and without control. Signs of social stability steadily increased the longer an area was allowed to recover from control, but change in abundance did not follow a consistent path. Comparison of abundance and stability among all sites and years demonstrated that control severely fractures social groups, but that the effect of control on abundance was neither consistent nor predictable. Management decisions involving large social predators must therefore consider social stability to ensure their conservation and ecological functioning.


Population Dynamics , Wolves/physiology , Animals , Animals, Wild , Australia , Behavior, Animal , Biodiversity , Ecology , Ecosystem , Female , Male , Models, Theoretical , Population Density , Predatory Behavior
...