Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498997

RESUMEN

Stearoyl-CoA desaturase-1 (SCD1) catalyzes the rate-liming step of monounsaturated fatty acid biosynthesis and is a key regulator of systemic glucose metabolism. Mice harboring either a global (GKO) or liver-specific deletion (LKO) of Scd1 display enhanced insulin signaling and whole-body glucose uptake. Additionally, GKO and LKO mice are protected from high-carbohydrate diet-induced obesity. Given that high-carbohydrate diets can lead to chronic metabolic diseases such as obesity, diabetes, and hepatic steatosis, it is critical to understand how Scd1 deficiency confers metabolically beneficial phenotypes. Here we show that insulin-like growth factor-binding protein 1 (IGFBP1), a hepatokine that has been reported to enhance insulin signaling, is significantly elevated in the liver and plasma of GKO and LKO mice fed a low-fat high-carbohydrate diet. We also observed that the expression of hepatic Igfbp1 is regulated by oleic acid (18:1n9), a product of SCD1, through the mTORC1-FGF21 axis both in vivo and in vitro.


Asunto(s)
Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Diana Mecanicista del Complejo 1 de la Rapamicina , Ácido Oléico , Estearoil-CoA Desaturasa , Animales , Ratones , Insulina/metabolismo , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Obesidad/metabolismo , Ácido Oléico/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Carbohidratos de la Dieta/administración & dosificación
2.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207603

RESUMEN

Stearoyl-CoA Desaturase-2 (SCD2) is a member of the Stearoyl-CoA Desaturase (SCD) family of enzymes that catalyze the rate-limiting step in monounsaturated fatty acid (MUFA) synthesis. The MUFAs palmitoleoyl-CoA (16:1n7) and oleoyl-CoA (18:1n9) are the major products of SCD2. Palmitoleoyl-CoA and oleoyl-CoA have various roles, from being a source of energy to signaling molecules. Under normal feeding conditions, SCD2 is ubiquitously expressed and is the predominant SCD isoform in the brain. However, obesogenic diets highly induce SCD2 in adipose tissue, lung, and kidney. Here we provide a comprehensive review of SCD2 in mouse development, metabolism, and various diseases, such as obesity, chronic kidney disease, Alzheimer's disease, multiple sclerosis, and Parkinson's disease. In addition, we show that bone mineral density is decreased in SCD2KO mice under high-fat feeding conditions and that SCD2 is not required for preadipocyte differentiation or the expression of PPARγ in vivo despite being required in vitro.


Asunto(s)
Adipocitos/enzimología , Diferenciación Celular , Ácidos Grasos Monoinsaturados/metabolismo , Enfermedades Neurodegenerativas/enzimología , Obesidad/enzimología , Insuficiencia Renal Crónica/enzimología , Estearoil-CoA Desaturasa/metabolismo , Acilcoenzima A/biosíntesis , Acilcoenzima A/genética , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/genética , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , Palmitoil Coenzima A/biosíntesis , Palmitoil Coenzima A/genética , Insuficiencia Renal Crónica/genética , Estearoil-CoA Desaturasa/genética
3.
Biochem Biophys Res Commun ; 527(3): 589-595, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32423819

RESUMEN

In mouse, there are four stearoyl-CoA desaturase isoforms (SCD1-4) that catalyze the synthesis of monounsaturated fatty acids. Previously, we have shown that mice harboring a whole body deletion of the SCD1 isoform (SCD1KO) are protected from diet and genetically induced adiposity. Here, we report that global deletion of the SCD2 isoform (SCD2KO) provides a similar protective effect against the onset of both high-fat diet (HFD) and high-carbohydrate diet (HCD) induced adiposity. After 10 weeks of HFD feeding or 6 weeks of HCD feeding, SCD2KO mice failed to gain weight and had decreased fat mass. On HFD, SCD2KO mice remained glucose and insulin tolerant. Lastly, the markers for energy expenditure, UCP1 and PGC-1α, were increased in the brown adipose tissue of HFD fed SCD2KO mice.


Asunto(s)
Adiposidad , Dieta de Carga de Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Obesidad/genética , Estearoil-CoA Desaturasa/genética , Animales , Metabolismo Energético , Femenino , Glucosa/metabolismo , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Factores Protectores , Estearoil-CoA Desaturasa/deficiencia , Estearoil-CoA Desaturasa/metabolismo
4.
J Biol Chem ; 294(51): 19475-19485, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31690632

RESUMEN

Increased carbohydrate consumption increases hepatic de novo lipogenesis, which has been linked to the development of chronic metabolic diseases, including obesity, hepatic steatosis, and insulin resistance. Stearoyl CoA desaturase 1 (SCD1) is a critical lipogenic enzyme that catalyzes the synthesis of two monounsaturated fatty acids, oleate and palmitoleate, from the saturated fatty acids stearate and palmitate, respectively. SCD1-deficient mouse models are protected against diet-induced adiposity, hepatic steatosis, and hyperglycemia. However, the mechanism of this protection by SCD1 deficiency is unclear. Using liver-specific SCD1 knockout (LKO) mice fed a high-carbohydrate, low-fat diet, we show that hepatic SCD1 deficiency increases systemic glucose uptake. Hepatic SCD1 deficiency enhanced glucose transporter type 1 (GLUT1) expression in the liver and also up-regulated GLUT4 and adiponectin expression in adipose tissue. The enhanced glucose uptake correlated with increased liver expression and elevated plasma levels of fibroblast growth factor 21 (FGF21), a hepatokine known to increase systemic insulin sensitivity and regulate whole-body lipid metabolism. Feeding LKO mice a triolein-supplemented but not tristearin-supplemented high-carbohydrate, low-fat diet reduced FGF21 expression and plasma levels. Consistently, SCD1 inhibition in primary hepatocytes induced FGF21 expression, which was repressed by treatment with oleate but not palmitoleate. Moreover, deletion of the transcriptional coactivator PPARγ coactivator 1α (PGC-1α) reduced hepatic and plasma FGF21 and white adipocyte tissue-specific GLUT4 expression and raised plasma glucose levels in LKO mice. These results suggest that hepatic oleate regulates glucose uptake in adipose tissue either directly or partially by modulating the hepatic PGC-1α-FGF21 axis.


Asunto(s)
Tejido Adiposo/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glucosa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Estearoil-CoA Desaturasa/genética , Adiponectina/sangre , Adiposidad , Animales , Metabolismo de los Hidratos de Carbono , Dieta , Ácidos Grasos Monoinsaturados/metabolismo , Hígado Graso/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Lipogénesis , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Ácido Oléico/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estearoil-CoA Desaturasa/metabolismo
5.
Int J Heat Mass Transf ; 120: 144-166, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30705462

RESUMEN

In order to better understand and quantify the effect of instabilities in systems utilizing flow boiling heat transfer, the present study explores dynamic results for pressure drop, mass velocity, thermodynamic equilibrium quality, and heated wall temperature to ascertain and analyze the dominant modes in which they oscillate. Flow boiling experiments are conducted for a range of mass velocities with both subcooled and saturated inlet conditions in vertical upflow, vertical downflow, and horizontal flow orientations. High frequency pressure measurements are used to investigate the influence of individual flow loop components (flow boiling module, pump, pre-heater, condenser, etc.) on dynamic behavior of the fluid, with fast Fourier transforms of the same used to provide critical frequency domain information. Conclusions from this analysis are used to isolate instabilities present within the system due to physical interplay between thermodynamic and hydrodynamic effects. Parametric analysis is undertaken to better understand the conditions under which these instabilities form and their impact on system performance. Several prior stability maps are presented, with new stability maps provided to better address contextual trends discovered in the present study.

6.
Int J Heat Mass Transf ; 127: 784-809, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30705463

RESUMEN

Investigation of two-phase flow dynamic behavior and instabilities has traditionally centered on phenomena present in boiling flows due to the safety critical nature of boiling in a variety of cooling applications. Analysis of pressure signals in condensing systems reveal the presence of relevant oscillatory phenomena during flow condensation as well, which may impact performance in applications concerned with precise system control. Towards this end, the present study presents results for oscillatory behavior observed in pressure measurements during flow condensation of FC-72 in a smooth circular tube in vertical upflow, vertical downflow, and horizontal flow orientations. Dynamic behavior observed within the test section is determined to be independent of other components within the flow loop, allowing it to be isolated and interpreted as resulting from physical aspects of two-phase flow with condensation. The presence of a peak oscillatory mode (one of significantly larger amplitude than any others present) is seen for 72% of vertical upflow test cases, 61% of vertical downflow, and 54% of horizontal flow. Relative intensities of this peak oscillatory mode are evaluated through calculation of Q Factor for the corresponding frequency response peak. Frequency and amplitude of peak oscillatory modes are also evaluated. Overall, vertical upflow is seen to exhibit the most significant oscillatory behavior, although in its maximum case amplitude is only seen to be 7.9% of time-averaged module inlet pressure, indicating there is little safety risk posed by oscillations under current operating conditions. Flow visualization image sequences for each orientation are also presented and used to draw parallels between physical characteristics of condensate film behavior under different operating conditions and trends in oscillatory behavior detected in pressure signals.

7.
Int J Heat Mass Transf ; 123: 143-171, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30713350

RESUMEN

Modeling of two-phase flow transient behavior and instabilities has traditionally been one of the more challenging endeavors in heat transfer research due to the need to distinguish between a wide range of instability modes systems can manifest depending on differences in operating conditions, as well as the difficulty in experimentally determining key characteristics of these phenomena. This study presents a new mechanistic model for Density Wave Oscillations (DWOs) in vertical upflow boiling using conclusions drawn from analysis of flow visualization images and transient experimental results as a basis from which to begin modeling. Counter to many prior studies attributing DWOs to feedback effects between flow rate, pressure drop, and flow enthalpy causing oscillations in position of the bulk boiling boundary, the present instability mode stems primarily from body force acting on liquid and vapor phases in a separated flow regime leading to liquid accumulation in the near-inlet region of the test section, which eventually departs and moves along the channel, acting to re-wet liquid film along the channel walls and re-establish annular, co-current flow. This process was modeled by dividing the test section into three distinct control volumes and solving transient conservation equations for each, yielding predictions of frequencies at which this process occurs as well as amplitude of associated pressure oscillations. Values for these parameters were validated against an experimental database of 236 FC-72 points and show the model provides good predictive accuracy and capably captures the influence of parametric changes to operating conditions.

8.
Int J Heat Mass Transf ; 125: 1240-1263, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30713351

RESUMEN

Historically, study of two-phase flow instabilities has been arguably one of the most challenging endeavors in heat transfer literature due to the wide range of instabilities systems can manifest depending on differences in operating conditions and flow geometry. This study utilizes experimental results for vertical upflow boiling of FC-72 in a rectangular channel with finite inlet quality to investigate Density Wave Oscillations (DWOs) and assess their potential impact on design of two-phase systems for future space missions. High-speed flow visualization image sequences are presented and used to directly relate the cyclical passage of High and Low Density Fronts (HDFs and LDFs) to dominant low-frequency oscillations present in transient pressure signals commonly attributed to DWOs. A methodology is presented to determine frequency and amplitude of DWO induced pressure oscillations, which are then plotted for a wide range of relevant operating conditions. Mass velocity (flow inertia) is seen to be the dominant parameter influencing frequency and amplitude of DWOs. Amplitude of pressure oscillations is at most 7% of the time-averaged pressure level for current operating conditions, meaning there is little risk to space missions. Reconstruction of experimental pressure signals using a waveform defined by frequency and amplitude of DWO induced pressure fluctuations is seen to have only moderate agreement with the original signal due to the oversimplifications of treating DWO induced fluctuations as perfectly sinusoidal in nature, assuming they occur at a constant frequency value, and neglecting other transient flow features. This approach is nonetheless determined to have potential value for use as a boundary condition to introduce DWOs in two-phase flow simulations should a model be capable of accurately predicting frequency and amplitude of oscillation.

9.
Arch Biochem Biophys ; 618: 32-43, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28193492

RESUMEN

Long-chain acyl-CoA synthetases (ACSLs) convert fatty acids to fatty acyl-CoAs to regulate various physiologic processes. We characterized the ACSL isoforms in a cell line of homogeneous rat beta cells (INS-1 832/13 cells) and human pancreatic islets. ACSL4 and ACSL3 proteins were present in the beta cells and human and rat pancreatic islets and concentrated in insulin secretory granules and less in mitochondria and negligible in other intracellular organelles. ACSL1 and ACSL6 proteins were not seen in INS-1 832/13 cells or pancreatic islets. ACSL5 protein was seen only in INS-1 832/13 cells. With shRNA-mediated gene silencing we developed stable ACSL knockdown cell lines from INS-1 832/13 cells. Glucose-stimulated insulin release was inhibited ∼50% with ACSL4 and ACSL3 knockdown and unaffected in cell lines with knockdown of ACSL5, ACLS6 and ACSL1. Lentivirus shRNA-mediated gene silencing of ACSL4 and ACSL3 in human pancreatic islets inhibited glucose-stimulated insulin release. ACSL4 and ACSL3 knockdown cells showed inhibition of ACSL enzyme activity more with arachidonate than with palmitate as a substrate, consistent with their preference for unsaturated fatty acids as substrates. ACSL4 knockdown changed the patterns of fatty acids in phosphatidylserines and phosphatidylethanolamines. The results show the involvement of ACLS4 and ACLS3 in insulin secretion.


Asunto(s)
Coenzima A Ligasas/metabolismo , Células Secretoras de Insulina/enzimología , Insulina/metabolismo , Islotes Pancreáticos/citología , Animales , Ácido Araquidónico/química , Coenzima A Ligasas/genética , Silenciador del Gen , Glucosa/química , Humanos , Secreción de Insulina , Ácido Palmítico/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Isoformas de Proteínas , Ratas
10.
Int J Heat Mass Transf ; 106: 295-312, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30524141

RESUMEN

Body force effects in flow condensation vary depending on channel orientation and fluid mass velocity, making the design of systems intended to operate in multiple orientations more complicated than those at a fixed orientation. This study examines the effects of body force on liquid film development for flow condensation of FC-72 in horizontal, vertical upflow, and vertical downflow orientations. Two test sections are utilized, one capable of providing high-speed imaging of liquid film development, and the other designed to allow detailed measurements of flow condensation heat transfer coefficient. High speed imaging shows that for low FC-72 mass velocities, flow regimes differ significantly among the three orientations, with vertical upflow exhibiting falling film behavior, horizontal flow showing stratification, and vertical downflow displaying annular co-current flow. For the case of low mass velocity horizontal flow, interfacial disturbances in the form of a sinusoidal wave are clearly visible with wavelengths on the order of 1-10 mm. As mass velocity is increased, the liquid film is seen to exhibit similar behavior for all three orientations due to interfacial shear stress negating body force effects. Heat transfer measurements reinforce these trends, with circumferential variations in heat transfer coefficient present for horizontal flow at low mass velocities, and differences in the axial variations in heat transfer coefficient seen when comparing vertical upflow to vertical downflow. As mass velocity is increased, differences in heat transfer coefficient are reduced, with the highest mass velocities exhibiting almost no variation with orientation. This convergence of values indicates the ability of interfacial shear stress to mitigate body force effects at sufficiently high mass velocities.

11.
Int J Heat Mass Transf ; 106: 313-328, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30524142

RESUMEN

This study concerns the development of a set of mechanistic criteria capable of predicting the flow conditions for which gravity independent flow condensation heat transfer can be achieved. Using FC-72 as working fluid, a control-volume based annular flow model is solved numerically to provide information regarding the magnitude of different forces acting on the liquid film and identify which forces are dominant for different flow conditions. Separating the influence of body force into two components, one parallel to flow direction and one perpendicular, conclusions drawn from the force term comparison are used to model limiting cases, which are interpreted as transition points for gravity independence. Experimental results for vertical upflow, vertical downflow, and horizontal flow condensation heat transfer coefficients are presented, and show that, for the given test section, mass velocities above 425 kg/m2 s ensure gravity independent heat transfer. Parametric evaluation of the criteria using different assumed values of mass velocity, orientation, local acceleration, and exit quality show that the criteria obey physically verifiable trends in line with those exhibited by the experimental results. As an extension, the separated flow model is utilized to provide a more sophisticated approach to determining whether a given configuration will perform independent of gravity. Results from the model show good qualitative agreement with experimental results. Additionally, analysis of trends indicate use of the separated flow model captures physics missed by simpler approaches, demonstrating that use of the separated flow model with the gravity independence criteria constitute a powerful predictive tool for engineers concerned with ensuring gravity independent flow condensation heat transfer performance.

12.
PLoS One ; 11(10): e0163234, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695036

RESUMEN

BACKGROUND: Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. OBJECTIVE: To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. METHODS: Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. RESULTS: Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat content, GMP increased total body bone mineral content and femur length. The prebiotic properties of GMP may mediate the beneficial effects of GMP on bone. CONCLUSIONS: Female mice adapt to high-fat feeding by increasing oxidative capacity in muscle tissue and to a lesser extent brown adipose tissue. High-fat feeding in female mice leads to development of a bone phenotype where femora show increased BMD and are stronger, yet more brittle. The increased brittleness of bone was associated with increased body fat content due to high-fat feeding. In summary, high-fat feeding in female mice increases mineralization of bone, but negatively impacts bone quality resulting in brittle bones.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Fémur/crecimiento & desarrollo , Obesidad/dietoterapia , Animales , Fenómenos Biomecánicos , Composición Corporal/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Caseínas/administración & dosificación , Grasas de la Dieta/administración & dosificación , Femenino , Fémur/efectos de los fármacos , Humanos , Ratones , Obesidad/metabolismo , Obesidad/fisiopatología , Oxidación-Reducción , Fragmentos de Péptidos/administración & dosificación , Fenotipo
13.
Int J Heat Mass Transf ; 103: 133-153, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30524138

RESUMEN

This study explores flow boiling pressure drop of FC-72 in a rectangular channel subjected to single-side and double-sided heating for vertical upflow, vertical downflow, and horizontal flow with positive inlet quality. Analysis of temporal records of pressure transducer signals is used to assess the influences of orientation, mass velocity, inlet quality, heat flux, and single-sided versus double-sided heating on magnitude of pressure drop oscillations, while fast Fourier transforms of the same records are used to capture dominant frequencies of oscillations. Time-averaged pressure drop results are also presented, with trends focusing on the competing influences of body force and flow inertia, and particular attention paid to the impact of vapor content at the test section inlet and the rate of vapor generation within the test section on pressure drop. Several popular pressure drop correlations are evaluated against the present pressure drop database. Predictions are presented for subsets of the database corresponding to low and high ranges of inlet quality and mass velocity. The correlations are ranked based on mean absolute error, overall data trends, and data spread. While most show general success in capturing the data trends, they do so with varying degrees of accuracy.

14.
Int J Heat Mass Transf ; 103: 1261-1279, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30524139

RESUMEN

Lack of understanding of flow boiling behavior in reduced gravity poses a major challenge to the development of future space vehicles utilizing two-phase thermal control systems (TCSs). A cost effective method to investigating the influence of reduced gravity on flow boiling is to perform ground experiments at different orientations relative to Earth gravity. This paper is the first part of a two-part study aimed at exploring flow boiling mechanisms of FC-72 in a rectangular channel heated along one wall or two opposite walls. Experiments are performed in vertical upflow, vertical downflow and horizontal flow, subject to large variations in mass velocity, inlet quality and wall heat flux. Detailed measurements are used to investigate the influences of orientation, and therefore gravity, on boiling curve, local and average heat transfer coefficients, and pressure drop, and their relationship with interfacial behavior is captured with high-speed video. For horizontal flow, the effects of gravity are reflected in appreciable stratification across the channel at low mass velocities, with gravity aiding vapor removal from, and liquid return to the bottom heated wall, while accumulating vapor along the top heated wall. For vertical upflow and vertical downflow, with both single-sided and double-sided heating, there is far better symmetry in vapor formation along the channel. The heat transfer coefficient shows significant variations among the different orientations and heating configurations at low mass velocities, but becomes insensitive to orientation above 800 kg/m2 s, proving inertia around this mass velocity is effective at negating any gravity effects. For low mass velocities, pressure drops are fairly equal for vertical upflow and vertical downflow, but greater than for horizontal flows. However, fairly equal pressure drops are achieved at high mass velocities for all orientations. Overall, this study proves that gravity effects on two-phase pressure drop and two-phase heat transfer are dictated mostly by mass velocity and, to a lesser extent, by inlet quality.

15.
Int J Heat Mass Transf ; 103: 1280-1296, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30524140

RESUMEN

This study is the second part of a two-part study exploring flow boiling of FC-72 along a rectangular channel with either one wall or two opposite walls heated for saturated inlet conditions. While the first part examined flow boiling interfacial behavior, boiling curves, local and average heat transfer coefficients, and pressure drops, this part is focused entirely on CHF measurement, flow visualization and modeling. Both single-sided and double-sided heating configurations are tested in horizontal flow, vertical upflow, and vertical downflow. For low mass velocities, high speed video analysis shows gravity has a dominant influence on interfacial behavior, with single-sided top-wall heating yielding the lowest CHF values, and bottom-wall heating the highest. For both single-sided heating and double-sided heating, increasing mass velocity decreases the influence of orientation on CHF, with identical CHF values achieved at high mass velocities irrespective of orientation, and increasing inlet quality serves to decrease the mass velocity value required for inertia to completely overcome gravity effects. A separated flow model for two-phase inlet conditions is proposed to predict key flow variables necessary for CHF modeling. With a MAE ≤ 14%, this study proves that the combination of separated flow model and Interfacial Lift-off Model is highly effective at predicting CHF for saturated inlet conditions as it did in prior studies for sub-cooled inlet conditions.

16.
Biochem Biophys Res Commun ; 445(3): 578-83, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24548407

RESUMEN

Over the past century, obesity has developed into a paramount health issue that affects millions of people worldwide. Obese individuals have an increased risk to develop other metabolic disorders, such as insulin resistance and atherosclerosis, among others. Previously we determined that mice lacking stearoyl-CoA desaturase-1 (SCD1) enzyme specifically in the skin (SKO) were lean and protected from high-fat diet induced adiposity. Additionally, lipocalin 2 (Lcn2) mRNA was found to be 27-fold higher in the skin of SKO mice compared to control mice. Given reports suggesting that Lcn2 plays a role in protection against diet-induced weight gain, adiposity and insulin resistance, we hypothesized that deletion of Lcn2 alongside the skin-specific SCD1 deficiency would diminish the obesity resistance observed in SKO mice. To test this, we developed mice lacking SCD1 expression in the skin and also lacking Lcn2 expression globally and surprisingly, these mice did not gain significantly more weight than the SKO mice under high-fat diet conditions. Therefore, we conclude that Lcn2 does not mediate the protection against high-fat diet-induced adiposity observed in SKO mice.


Asunto(s)
Proteínas de Fase Aguda/genética , Eliminación de Gen , Lipocalinas/genética , Obesidad/genética , Proteínas Oncogénicas/genética , Piel/enzimología , Estearoil-CoA Desaturasa/genética , Proteínas de Fase Aguda/metabolismo , Animales , Dieta Alta en Grasa , Femenino , Prueba de Tolerancia a la Glucosa , Lipocalina 2 , Lipocalinas/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/enzimología , Obesidad/metabolismo , Proteínas Oncogénicas/metabolismo , Piel/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Triglicéridos/análisis , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...