Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiother Oncol ; 182: 109575, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36822356

RESUMEN

PURPOSE: Despite the anticipated clinical benefits of intensity-modulated proton therapy (IMPT), plan robustness may be compromised due to its sensitivity to patient treatment uncertainties, especially for tumours with large motion. In this study, we investigated treatment course-wise plan robustness for intra-thoracic tumours with large motion comparing a 4D pre-clinical evaluation method (4DREM) to our clinical 3D/4D dose reconstruction and accumulation methods. MATERIALS AND METHODS: Twenty patients with large target motion (>10 mm) were treated with five times layered rescanned IMPT. The 3D-robust optimised plans were generated on the averaged planning 4DCT. Using multiple 4DCTs, treatment plan robustness was assessed on a weekly and treatment course-wise basis through the 3D robustness evaluation method (3DREM, based on averaged 4DCTs), the 4D robustness evaluation method (4DREM, including the time structure of treatment delivery and 4DCT phases) and 4D dose reconstruction and accumulation (4DREAL, based on fraction-wise information). RESULTS: Baseline target motion for all patients ranged from 11-17 mm. For the offline adapted course-wise dose assessment, adequate target dose coverage was found for all patients. The target volume receiving 95% of the prescription dose was consistent between methods with 16/20 patients showing differences < 1%. 4DREAL showed the highest target coverage (99.8 ± 0.6%, p < 0.001), while no differences were observed between 3DREM and 4DREM (99.3 ± 1.3% and 99.4 ± 1.1%, respectively). CONCLUSION: Our results show that intra-thoracic tumours can be adequately treated with IMPT in free breathing for target motion amplitudes up to 17 mm employing any of the accumulation methods. Anatomical changes, setup and range errors demonstrated a more severe impact on target coverage than motion in these patients treated with fractionated proton radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Terapia de Protones , Radioterapia de Intensidad Modulada , Neoplasias Torácicas , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada Cuatridimensional/métodos , Dosificación Radioterapéutica , Neoplasias Torácicas/diagnóstico por imagen , Neoplasias Torácicas/radioterapia , Terapia de Protones/métodos , Radioterapia de Intensidad Modulada/métodos
2.
Radiother Oncol ; 177: 197-204, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368472

RESUMEN

PURPOSE: In the Netherlands, oesophageal cancer (EC) patients are selected for intensity modulated proton therapy (IMPT) using the expected normal tissue complication probability reduction (ΔNTCP) when treating with IMPT compared to volumetric modulated arc therapy (VMAT). In this study, we evaluate the robustness of the first EC patients treated with IMPT in our clinic in terms of target and organs-at-risk (OAR) dose with corresponding NTCP, as compared to VMAT. MATERIALS AND METHODS: For 20 consecutive EC patients, clinical IMPT and VMAT plans were created on the average planning 4DCT. Both plans were robustly evaluated on weekly repeated 4DCTs and if target coverage degraded, replanning was performed. Target coverage was evaluated for complete treatment trajectories with and without replanning. The planned and accumulated mean lung dose (MLD) and mean heart dose (MHD) were additionally evaluated and translated into NTCP. RESULTS: Replanning in the clinic was performed more often for IMPT (15x) than would have been needed for VMAT (8x) (p = 0.11). Both adaptive treatments would have resulted in adequate accumulated target dose coverage. Replanning in the first week of treatment had most clinical impact, as anatomical changes resulting in insufficient accumulated target coverage were already observed at this stage. No differences were found in MLD between the planned dose and the accumulated dose. Accumulated MHD differed from the planned dose (p < 0.001), but since these differences were similar for VMAT and IMPT (1.0 and 1.5 Gy, respectively), the ΔNTCP remained unchanged. CONCLUSION: Following an adaptive clinical workflow, adequate target dose coverage and stable OAR doses with corresponding NTCPs was assured for both IMPT and VMAT.


Asunto(s)
Neoplasias Esofágicas , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Protones , Radioterapia de Intensidad Modulada/métodos , Terapia de Protones/métodos , Órganos en Riesgo , Neoplasias Esofágicas/radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA