Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Front Nutr ; 11: 1357920, 2024.
Article En | MEDLINE | ID: mdl-38600994

Dairy products and fermented foods have a reported association with maintained cognitive function. Camembert cheese, a dairy product fermented by the white mold Penicillium camemberti, has also been shown to enhance cognitive function in vivo. Oleamide, derived from the fermentation of the white mold, is a candidate for an active component, and expected to improve both cognitive function and sleep conditions. Thus, this study investigated whether the milk-based culture of white mold (MCW), and oleamide, could improve cognitive function and sleep state clinically. A multi-arm randomized, double-blind, placebo-controlled trial was conducted in Tokyo, Japan. 60 healthy Japanese individuals aged 50-75 who were aware of their cognitive decline were randomly and equally divided into three groups of 20 participants using computer-generated random numbers. Participants took either MCW (equivalent to 60 µg/day of oleamide), 60 µg/day of oleamide, or placebo capsules for 12 weeks. Serum BDNF, cognitive function by Cognitrax as primary and MCI Screen as secondary outcome, and sleep status using the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J) were assessed before and after intervention. The participants, outcome assessors and analysts, and research assistants were blinded to the group assignment. Of the 60 participants, 58 completed the study and were analyzed. No adverse events related to test foods were observed. The placebo group showed a negative rate of change in serum BDNF (-10.5% ± 19.7%), whereas the MCW and oleamide groups showed positive changes (2.0% ± 27.1% and 1.3% ± 13.5%, respectively). Cognitrax scores increased after 12 weeks in all groups. Conversely, the MPI score of the MCI Screen demonstrated a significant improvement in the MCW and oleamide groups compared to the placebo group (p = 0.013 and p < 0.001, respectively). The subscales, immediate free recall and delayed free recall, also significantly increased in them compared to the placebo group. Although PSQI-J revealed no significant differences among groups, the MCW and oleamide groups showed significant improvement after intervention in overall score, subjective sleep quality, and sleep latency. Our results suggest that MCW and its component, oleamide, are safe and contribute to maintaining cognitive functions, particularly short-term and working memory, and improving sleep state. Clinical trial registration: https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000054792, identifier UMIN-CTR UMIN000048084.

2.
Heliyon ; 10(2): e24430, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38268830

Dark chocolate, rich in polyphenols, increases cerebral blood flow and improves cognitive function. This study aimed to determine whether the consumption of chocolate with a high concentration of polyphenols helps to maintain cognitive performance during cognitively demanding tasks. In this randomized, single-blinded, crossover, dose-comparison study, 18 middle-aged adults consumed two types of chocolate (25 g each), one with a high concentration (635.0 mg) and the other with a low concentration (211.7 mg) of cacao polyphenols, and performed a cognitive task requiring response inhibition and selective attention over two time periods (15-30 min and 40-55 min after consumption, respectively). Autonomic nerve function and subjective feelings, such as fatigue and concentration, were measured before food intake and after the second task to assess the participant's state. The results showed that the average reaction time between the first and second sessions was not significantly different for either high- or low-concentration chocolate consumption. However, the percentage of correct responses was similar in the first (96.7 %) and second (96.8 %) sessions for high-concentration chocolate consumption and significantly lower for low-concentration chocolate consumption in the second (96.4 %) session than in the first session (97.3 %). Autonomic nerve function showed a significant increase in sympathetic nerve activity after the second task with high-concentration chocolate consumption, while subjective feelings showed an increase in mental fatigue for both chocolate types but a significant decrease in concentration only after the second task with low-concentration chocolate consumption. These findings suggest that dark chocolate consumption contributes to the maintenance of performance and concentration in continuous and demanding cognitive tasks.

3.
Nutrients ; 15(14)2023 Jul 18.
Article En | MEDLINE | ID: mdl-37513598

Diet modification may contribute to the prevention of age-related cognitive decline. The association between dairy product consumption and cognitive function in older people remains unknown. We investigated whether cheese intake is associated with lower cognitive function (LCF) in community-dwelling older adults. This cross-sectional study included 1503 adults aged over 65 years. The analyzed data were obtained through face-to-face interviews and functional ability measurement. Cognitive function was assessed using the mini-mental state examination (MMSE), and a score ≤23 was defined as LCF. The prevalence of LCF was 4.6%, and this group had smaller calf circumference, slower usual walking speed, and a more frequent history of anemia than subjects with MMSE scores >23. After adjusting for confounding factors, logistic regression analysis revealed cheese intake (odds ratio (OR) = 0.404, 95% confidence interval (CI) = 0.198-0.824), age (OR = 1.170, 95% CI = 1.089-1.256), usual walking speed (OR = 0.171, 95% CI = 0.062-0.472) and calf circumference (OR = 0.823, 95% CI = 0.747-0.908) to be significant factors associated with LCF. Although the present study was an analysis of cross-sectional data of Japanese community-dwelling older adults, the results suggest that cheese intake is inversely associated with LCF.


Cheese , Cognitive Dysfunction , Humans , Aged , Independent Living/psychology , Cross-Sectional Studies , East Asian People , Cognition , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnosis
4.
Nutrients ; 16(1)2023 Dec 21.
Article En | MEDLINE | ID: mdl-38201871

Cacao polyphenol-enriched dark chocolate may have beneficial effects on human health, such as facilitating maintaining good performance in long-lasting cognitive tasks. This study examined the effects of dark chocolate intake on improving brain function during cognitive tasks using functional magnetic resonance imaging (fMRI). In this randomized, single-blinded, crossover, and dose-comparison study, 26 healthy middle-aged participants ingested dark chocolate (25 g) either with a low concentration (LC) (211.7 mg) or a high concentration (HC) (635 mg) of cacao polyphenols. Thereafter, their brain activities were analyzed during continuous and effortful cognitive tasks relevant to executive functioning using fMRI in two consecutive 15 min sessions (25 and 50 min after ingestion). We observed significant interaction effects between chocolate consumption and brain activity measurement sessions in the left dorsolateral prefrontal cortex and left inferior parietal lobule. After HC chocolate ingestion, these areas showed lower brain activity in the second session than in the first session; however, these areas showed higher activity in the second session after LC chocolate ingestion. These results suggest that cacao polyphenol-enriched dark chocolate enhances the efficient use of cognitive resources by reducing the effort of brain activity.


Cacao , Chocolate , Humans , Middle Aged , Brain/diagnostic imaging , Cognition , Magnetic Resonance Imaging , Polyphenols , Cross-Over Studies
5.
Brain Pathol ; 32(1): e13002, 2022 01.
Article En | MEDLINE | ID: mdl-34255887

The striatonigral and olivopontocerebellar systems are known to be vulnerable in multiple system atrophy (MSA), showing neuronal loss, astrogliosis, and alpha-synuclein-immunoreactive inclusions. MSA patients who displayed abundant neuronal cytoplasmic inclusions (NCIs) in the regions other than the striatonigral or olivopontocerebellar system have occasionally been diagnosed with variants of MSA. In this study, we report clinical and pathologic findings of MSA patients characterized by prominent pathologic involvement of the hippocampus. We assessed 146 consecutively autopsied MSA patients. Semi-quantitative analysis of anti-alpha-synuclein immunohistochemistry revealed that 12 of 146 patients (8.2%) had severe NCIs in two or more of the following areas: the hippocampal granule cells, cornu ammonis areas, parahippocampal gyrus, and amygdala. In contrast, the remaining 134 patients did not show severe NCIs in any of these regions. Patients with severe hippocampal involvement showed a higher representation of women (nine women/three men; Fisher's exact test, p = 0.0324), longer disease duration (13.1 ± 5.9 years; Mann-Whitney U-test, p = 0.000157), higher prevalence of cognitive impairment (four patients; Fisher's exact test, p = 0.0222), and lower brain weight (1070.3 ± 168.6 g; Mann-Whitney U-test, p = 0.00911) than other patients. The hippocampal granule cells and cornu ammonis area 1/subiculum almost always showed severe NCIs. The NCIs appeared to be ring-shaped or neurofibrillary tangle-like, fibrous configurations. Three of 12 patients also had dense, round-shaped NCIs that were morphologically similar to pick bodies. The patients with Pick body-like inclusions showed more severe atrophy of the medial temporal lobes and broader spreading of NCIs than those without. Immunohistochemistry for hyperphosphorylated tau and phosphorylated TDP-43 revealed minimal aggregations in the hippocampus of the hippocampal MSA patients. Our observations suggest a pathological variant of MSA that is characterized by severe involvement of hippocampal neurons. This phenotype may reinforce the importance of neuronal alpha-synucleinopathy in the pathogenesis of MSA.


Multiple System Atrophy , Brain/pathology , Female , Hippocampus/pathology , Humans , Inclusion Bodies/pathology , Multiple System Atrophy/pathology , Neurons/pathology , alpha-Synuclein/metabolism
7.
Phytomedicine ; 27: 33-38, 2017 Apr 15.
Article En | MEDLINE | ID: mdl-28314477

BACKGROUND: Polymethoxyflavone (PMF) is one of bioactive compounds in Citrus Unshiu and included mainly in the peels rather than the fruits, seeds and leaves. HYPOTHESIS/PURPOSE: Supercritical CO2 extraction is one candidate for selective extraction of polymethoxyflavone and in this study, supercritical CO2 extraction with/without ethanol entrainer from Citrus Unshiu peels was examined at a temperature of 333K and a pressure of 30MPa. METHODS: CRE (cyclic AMP response element)-mediated transcriptional assay was examined by using the extracts from supercritical fluid extraction. RESULTS: The results showed that extracts including nobiletin increased with increasing ethanol concentration in supercritical CO2 and the elapsed extraction time. Extracts at ethanol concentration of 5 mol% showed high CRE-mediated transcription activity. This can be caused by activity of the extract including nobiletin in addition to the other methoxylated flavonoid species such as tangeretin. Extracts at ethanol concentration of 50% showed the highest CRE-mediated transcription activity, which can be attributed to flavonoid glycoside such as hesperidin. From our investigations, flavonoid glycoside can be one of promoters of CRE-mediated transcription activity.


Citrus/chemistry , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Flavones/analysis , Flavones/pharmacology , Fruit/chemistry , Plant Extracts/pharmacology , Japan , Plant Extracts/analysis
8.
Lipids ; 52(5): 423-431, 2017 05.
Article En | MEDLINE | ID: mdl-28357619

Supplementation with sphingomyelin has been reported to prevent disease and maintain good health. However, intact sphingomyelin and ceramides are poorly absorbed compared with glycerolipids. Therefore, if the bioavailability of dietary sphingomyelin can be increased, supplementation would be more effective at lower doses. The aim of this study in rats was to evaluate the effect of fermented milk on the bioavailability of dietary sphingomyelin in rats. After the rats had fasted for 15 h, test solutions were administrated orally. Blood samples were collected from the tail vein before and 90, 180, 270, and 360 min after administration. Compared with sphingomyelin/milk phospholipids concentrate (MPL) alone, co-ingestion of sphingomyelin/MPL with fermented milk caused an approximate twofold significant increase in serum ceramides containing d16:1 sphingosine with 16:0, 22:0, 23:0 and 24:0 fatty acids, which was derived from the ingested sphingomyelin. While nonfat milk also increased the serum levels of these ceramides, fermented milk was more effective. Co-ingestion of the upper layer of fermented milk or exopolysaccharide concentrate prepared from fermented milk significantly increased serum ceramide levels. X-ray diffraction analysis also showed addition of fermented milk or EPS concentrate to sphingomyelin eliminated the characteristic peak of sphingomyelin. This study demonstrated for the first time that co-ingestion of dietary sphingomyelin and fermented milk, compared with ingestion of dietary sphingomyelin alone, caused a significant increase in the absorption of sphingomyelin. Our results indicate exopolysaccharides in fermented milk may contribute to inhibition of sphingomyelin crystallization, resulting in enhanced absorption of dietary sphingomyelin in rats.


Fermentation , Lactobacillales/physiology , Milk/chemistry , Sphingomyelins/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Ceramides/blood , Fatty Acids/blood , Male , Phospholipids/blood , Rats , Rats, Sprague-Dawley , Sphingomyelins/administration & dosage
9.
Lipids ; 50(10): 987-96, 2015 Oct.
Article En | MEDLINE | ID: mdl-26233817

Supplementation with sphingomyelin has been reported to have beneficial effects on disease prevention and health maintenance. However, compared with glycerolipids, intact sphingomyelin and ceramides are poorly absorbed. Therefore, if the bioavailability of dietary sphingomyelin is increased, then the dose administered can be reduced. This study was designed to identify molecular species of ceramide in rat lymph after the ingestion of milk sphingomyelin, and to compare the effect of purified sphingomyelin with milk phospholipids concentrate (MPL, 185 mg sphingomyelin/g) on lymphatic absorption of milk sphingomyelin. Lymph was collected hourly for 6 h from lymph-cannulated rats (n = 8/group) after the administration of a control emulsion (triolein, bovine serum albumin, and sodium taurocholate), a sphingomyelin emulsion (control + purified sphingomyelin), or a MPL emulsion (control + MPL). Molecular species of ceramide in lymph were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Molecular species of ceramide, containing not only d18:1, but also d17:1 and d16:1 sphingosine with 16:0, 22:0, 23:0, and 24:0 fatty acids (specific to milk sphingomyelin), were increased in rat lymph after the administration of milk sphingomyelin. Their molecular species were similar to those of dietary milk sphingomyelin. Recovery of ceramide moieties from dietary sphingomyelin was 1.28- to 1.80-fold significantly higher in the MPL group than in the sphingomyelin group. Our results demonstrated that dietary sphingomyelin from milk was transported to lymph as molecular species of ceramide hydrolyzed from milk sphingomyelin and co-ingestion of sphingomyelin with glycerophospholipids enhanced the bioavailability of dietary sphingomyelin.


Dietary Fats/pharmacokinetics , Lymph/chemistry , Milk/chemistry , Phospholipids/administration & dosage , Sphingomyelins/pharmacokinetics , Animals , Biological Availability , Ceramides/pharmacokinetics , Dietary Fats/administration & dosage , Intestinal Absorption/drug effects , Male , Milk/metabolism , Rats , Rats, Sprague-Dawley , Sphingomyelins/administration & dosage
10.
PLoS One ; 10(8): e0136377, 2015.
Article En | MEDLINE | ID: mdl-26302442

Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.


Milk Proteins/administration & dosage , Skin Abnormalities/diet therapy , Skin/drug effects , Sphingomyelins/administration & dosage , Animals , Humans , Mice , Mice, Hairless , Skin/radiation effects , Skin Abnormalities/pathology , Ultraviolet Rays/adverse effects , Water/metabolism
11.
Physiol Genomics ; 47(8): 355-63, 2015 Aug.
Article En | MEDLINE | ID: mdl-26058835

Dietary collagen hydrolysate has been hypothesized to improve skin barrier function. To investigate the effect of long-term collagen hydrolysate administration on the skin, we evaluated stratum corneum water content and skin elasticity in intrinsically aged mice. Female hairless mice were fed a control diet or a collagen hydrolysate-containing diet for 12 wk. Stratum corneum water content and skin elasticity were gradually decreased in chronologically aged control mice. Intake of collagen hydrolysate significantly suppressed such changes. Moreover, we used DNA microarrays to analyze gene expression in the skin of mice that had been administered collagen hydrolysate. Twelve weeks after the start of collagen intake, no significant differences appeared in the gene expression profile compared with the control group. However, 1 wk after administration, 135 genes were upregulated and 448 genes were downregulated in the collagen group. This suggests that gene changes preceded changes of barrier function and elasticity. We focused on several genes correlated with functional changes in the skin. Gene Ontology terms related to epidermal cell development were significantly enriched in upregulated genes. These skin function-related genes had properties that facilitate epidermal production and differentiation while suppressing dermal degradation. In conclusion, our results suggest that altered gene expression at the early stages after collagen administration affects skin barrier function and mechanical properties. Long-term oral intake of collagen hydrolysate improves skin dysfunction by regulating genes related to production and maintenance of skin tissue.


Collagen/administration & dosage , Collagen/pharmacology , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Skin/drug effects , Skin/metabolism , Administration, Oral , Animals , Cluster Analysis , Dermis/drug effects , Dermis/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Elasticity , Epidermis/drug effects , Epidermis/metabolism , Female , Fishes , Gene Ontology , Hydrolysis , Mice, Hairless , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
12.
J Dermatol Sci ; 78(3): 224-31, 2015 Jun.
Article En | MEDLINE | ID: mdl-25816721

BACKGROUND: Dietary milk phospholipids (MPLs) increase hydration of the stratum corneum and reduced transepidermal water loss (TEWL) in hairless mice fed a standard diet. However, the mechanism by which MPLs improve skin barrier functions has yet to be established. OBJECTIVE: This study was designed to examine the mechanism by which MPLs may affect covalently bound ceramides and markers of skin inflammation and improve the skin barrier defect in hairless mice fed a magnesium-deficient (HR-AD) diet. METHODS: Four-week-old female hairless mice were randomized into four groups (n=10/group), and fed a standard (control) diet, the HR-AD diet, the HR-AD diet supplemented with either 7.0 g/kg MPLs (low [L]-MPL) or 41.0 g/kg MPLs (high [H]-MPL). RESULTS: Dietary MPLs improved the dry skin condition of hairless mice fed the HR-AD diet. MPLs significantly increased the percentage of covalently bound ω-hydroxy ceramides in the epidermis, and significantly decreased both thymus and activation-regulated chemokine (TARC) mRNA and thymic stromal lymphopoietin (TSLP) mRNA levels in skin, compared with the HR-AD diet. Furthermore, the MPL diets significantly decreased serum concentrations of immunoglobulin-E, TARC, TSLP, and soluble P-selectin versus the HR-AD diet. CONCLUSION: Our study showed for the first time that dietary MPLs may modulate epidermal covalently bound ceramides associated with formation of lamellar structures and suppress skin inflammation, resulting in improved skin barrier function.


Ceramides/analysis , Dermatitis/prevention & control , Epidermis/chemistry , Milk/chemistry , Phospholipids/administration & dosage , Animals , Body Water/metabolism , Diet , Epidermis/metabolism , Female , Immunoglobulin E/blood , Mice , Mice, Hairless , P-Selectin/blood
13.
Photodermatol Photoimmunol Photomed ; 29(4): 204-11, 2013 Aug.
Article En | MEDLINE | ID: mdl-23815353

BACKGROUND: Ultraviolet B (UVB) irradiation induces serious damage to the skin. Collagen hydrolysate and collagen-derived peptides have effects on skin function in vivo and in vitro. However, few studies have investigated changes in the epidermal barrier or dermal elasticity caused by UVB. Here, we investigated the loss of epidermal barrier function and skin elasticity induced by UVB irradiation in hairless mice fed collagen hydrolysate. METHODS: Mice were orally administered collagen hydrolysate, in a single dose (20 mJ/cm(2) ) or repeated doses (10-30 mJ/cm(2) , 3 times/week for 6 weeks), and the dorsal skin was exposed to UVB. Skin measurements and histological and analytical studies were performed. RESULTS: In control mice, a single UVB irradiation induced epidermal barrier dysfunction including an increase in transepidermal water loss (TEWL), epidermal hyperplasia, and a decrease in stratum corneum water content. Administration of collagen hydrolysate significantly decreased TEWL and epidermal thickness and increased stratum corneum water content. Repeated UVB irradiation decreased skin elasticity and dermal hyaluronic acid (HA) content in control mice, whereas collagen hydrolysate significantly suppressed both the increase in TEWL and the decrease in stratum corneum water content and improved skin elasticity and dermal HA content. CONCLUSIONS: Collagen hydrolysate administration affects epidermal barrier function and dermal skin elasticity.


Collagen/pharmacology , Dermis/metabolism , Elasticity , Epidermis/metabolism , Protein Hydrolysates/pharmacology , Ultraviolet Rays/adverse effects , Administration, Oral , Animals , Dermis/pathology , Elasticity/drug effects , Elasticity/radiation effects , Epidermis/pathology , Female , Mice , Mice, Hairless , Water/metabolism
...