Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
J Phys Chem B ; 122(26): 6702-6711, 2018 07 05.
Article En | MEDLINE | ID: mdl-29924605

Photosystem II oxidizes water at a Mn4CaO5 cluster. Oxygen evolution is accompanied by proton release through a 35 Šhydrogen-bonding network to the lumen. The mechanism of this proton-transfer reaction is not known, but the reaction is dependent on chloride. Here, vibrational spectroscopy defines the functional properties of the proton-transfer network using chloride, bromide, and nitrate as perturbative agents. As assessed by peptide C═O frequencies, bromide substitution yields a spectral Stark shift because of its increase in ionic radius. Nitrate substitution leads to more complex spectral changes, consistent with an overall increase in hydrogen-bonding interactions with the peptide backbone. The effects are similar to spectral changes previously documented in site-directed mutations in a putative lumenal pathway. Importantly, the effects of nitrate are reversed by the osmolyte, trehalose. Trehalose is known to alter hydrogen-bonding interactions in proteins. Trehalose addition also reverses a shift in an internal hydronium ion signal, consistent with an alteration in its p Ka value and a change in the basicity of bound nitrate. The spectra provide evidence that the proton-transfer pathway contains peptide carbonyl groups, internal water, a hydronium ion, and amino acid side chains. These experiments also show that the proton-transfer pathway functionally adapts to changes in electric field, p Ka, and hydrogen bonding and thereby optimizes proton transfer to the lumen.


Chlorides/chemistry , Nitrates/chemistry , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Trehalose/chemistry , Hydrogen Bonding , Manganese/chemistry , Oxidation-Reduction , Oxygen/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Protons , Spectroscopy, Fourier Transform Infrared , Water/chemistry
...