Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(33): e2304943120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549290

RESUMEN

Conventional dendritic cells (cDCs) are required for peripheral T cell homeostasis in lymphoid organs, but the molecular mechanism underlying this requirement has remained unclear. We here show that T cell-specific CD47-deficient (Cd47 ΔT) mice have a markedly reduced number of T cells in peripheral tissues. Direct interaction of CD47-deficient T cells with cDCs resulted in activation of the latter cells, which in turn induced necroptosis of the former cells. The deficiency and cell death of T cells in Cd47 ΔT mice required expression of its receptor signal regulatory protein α on cDCs. The development of CD4+ T helper cell-dependent contact hypersensitivity and inhibition of tumor growth by cytotoxic CD8+ T cells were both markedly impaired in Cd47 ΔT mice. CD47 on T cells thus likely prevents their necroptotic cell death initiated by cDCs and thereby promotes T cell survival and function.


Asunto(s)
Antígeno CD47 , Linfocitos T CD8-positivos , Animales , Ratones , Antígeno CD47/genética , Antígeno CD47/metabolismo , Linfocitos T CD8-positivos/metabolismo , Supervivencia Celular , Células Dendríticas/metabolismo , Necroptosis , Receptores Inmunológicos/metabolismo
2.
Cancer Sci ; 114(5): 1871-1881, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36788737

RESUMEN

Langerhans cell histiocytosis (LCH) is a rare neoplastic disorder characterized by inflammatory lesions arising from the anomalous accumulation of pathogenic CD1a+ CD207+ dendritic cells (DCs). SIRPα is a transmembrane protein highly expressed in myeloid cells such as DCs and macrophages. Here we show that SIRPα is a potential therapeutic target for LCH. We found that SIRPα is expressed in CD1a+ cells of human LCH lesions as well as in CD11c+ DCs in the spleen, liver, and lung of a mouse model of LCH (BRAFV600ECD11c mouse), in which an LCH-associated active form of human BRAF is expressed in a manner dependent on the mouse Cd11c promoter. BRAFV600ECD11c mice manifested markedly increased numbers of CD4+ T cells, regulatory T cells, and macrophages as well as of CD11c+ MHCII+ DCs in the spleen. Monotherapy with a mAb to SIRPα greatly reduced the percentage of CD11c+ MHCII+ DCs in peripheral blood, LCH-like lesion size in the liver, and the number of CD11c+ MHCII+ DCs in the spleen of the mutant mice. Moreover, this mAb promoted macrophage-mediated phagocytosis of CD11c+ DCs from BRAFV600ECD11c mice, whereas it had no effects on the viability or CCL19-dependent migration of such CD11c+ DCs or on their expression of the chemokine genes Ccl5, Ccl20, Cxcl11, and Cxcl12. Our results thus suggest that anti-SIRPα monotherapy is a promising approach to the treatment of LCH that is dependent in part on the promotion of the macrophage-mediated killing of LCH cells.


Asunto(s)
Histiocitosis de Células de Langerhans , Animales , Humanos , Ratones , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/metabolismo , Bazo/metabolismo
3.
Front Immunol ; 14: 1294814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162643

RESUMEN

Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment and are considered potential targets for cancer immunotherapy. To examine the antitumor effects of agents targeting human TAMs in vivo, we here established preclinical tumor xenograft models based on immunodeficient mice that express multiple human cytokines and have been reconstituted with a human immune system by transplantation of human CD34+ hematopoietic stem and progenitor cells (HIS-MITRG mice). HIS-MITRG mice supported the growth of both human cell line (Raji)- and patient-derived B cell lymphoma as well as the infiltration of human macrophages into their tumors. We examined the potential antitumor action of an antibody to human SIRPα (SE12C3) that inhibits the interaction of CD47 on tumor cells with SIRPα on human macrophages and thereby promotes Fcγ receptor-mediated phagocytosis of the former cells by the latter. Treatment with the combination of rituximab (antibody to human CD20) and SE12C3 inhibited Raji tumor growth in HIS-MITRG mice to a markedly greater extent than did rituximab monotherapy. This enhanced antitumor effect was dependent on human macrophages and attributable to enhanced rituximab-dependent phagocytosis of lymphoma cells by human macrophages. Treatment with rituximab and SE12C3 also induced reprogramming of human TAMs toward a proinflammatory phenotype. Furthermore, the combination treatment essentially prevented the growth of patient-derived diffuse large B cell lymphoma in HIS-MITRG mice. Our findings thus support the study of HIS-MITRG mice as a model for the preclinical evaluation in vivo of potential therapeutics, such as antibodies to human SIRPα, that target human TAMs.


Asunto(s)
Antígenos de Diferenciación , Neoplasias , Humanos , Ratones , Animales , Rituximab/farmacología , Rituximab/uso terapéutico , Línea Celular Tumoral , Anticuerpos , Inmunoterapia , Modelos Animales de Enfermedad , Neoplasias/terapia
4.
J Clin Invest ; 130(12): 6639-6655, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196462

RESUMEN

By restoring glucose-regulated insulin secretion, glucagon-like peptide-1-based (GLP-1-based) therapies are becoming increasingly important in diabetes care. Normally, the incretins GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) jointly maintain normal blood glucose levels by stimulation of insulin secretion in pancreatic ß cells. However, the reason why only GLP-1-based drugs are effective in improving insulin secretion after presentation of diabetes has not been resolved. ATP-sensitive K+ (KATP) channels play a crucial role in coupling the systemic metabolic status to ß cell electrical activity for insulin secretion. Here, we have shown that persistent membrane depolarization of ß cells due to genetic (ß cell-specific Kcnj11-/- mice) or pharmacological (long-term exposure to sulfonylureas) inhibition of the KATP channel led to a switch from Gs to Gq in a major amplifying pathway of insulin secretion. The switch determined the relative insulinotropic effectiveness of GLP-1 and GIP, as GLP-1 can activate both Gq and Gs, while GIP only activates Gs. The findings were corroborated in other models of persistent depolarization: a spontaneous diabetic KK-Ay mouse and nondiabetic human and mouse ß cells of pancreatic islets chronically treated with high glucose. Thus, a Gs/Gq signaling switch in ß cells exposed to chronic hyperglycemia underlies the differential insulinotropic potential of incretins in diabetes.


Asunto(s)
Cromograninas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Incretinas/farmacología , Células Secretoras de Insulina/metabolismo , Transducción de Señal , Animales , Cromograninas/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/patología , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/metabolismo
5.
Am J Physiol Endocrinol Metab ; 316(3): E464-E474, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30562058

RESUMEN

In arsenic-endemic regions of the world, arsenic exposure correlates with diabetes mellitus. Multiple animal models of inorganic arsenic (iAs, as As3+) exposure have revealed that iAs-induced glucose intolerance manifests as a result of pancreatic ß-cell dysfunction. To define the mechanisms responsible for this ß-cell defect, the MIN6-K8 mouse ß-cell line was exposed to environmentally relevant doses of iAs. Exposure to 0.1-1 µM iAs for 3 days significantly decreased glucose-induced insulin secretion (GIIS). Serotonin and its precursor, 5-hydroxytryptophan (5-HTP), were both decreased. Supplementation with 5-HTP, which loads the system with bioavailable 5-HTP and serotonin, rescued GIIS, suggesting that recovery of this pathway was sufficient to restore function. Exposure to iAs was accompanied by an increase in mRNA expression of UDP-glucuronosyltransferase 1 family, polypeptide a6a (Ugt1a6a), a phase-II detoxification enzyme that facilitates the disposal of cyclic amines, including serotonin, via glucuronidation. Elevated Ugt1a6a and UGT1A6 expression levels were observed in mouse and human islets, respectively, following 3 days of iAs exposure. Consistent with this finding, the enzymatic rate of serotonin glucuronidation was increased in iAs-exposed cells. Knockdown by siRNA of Ugt1a6a during iAs exposure restored GIIS in MIN6-K8 cells. This effect was prevented by blockade of serotonin biosynthesis, suggesting that the observed iAs-induced increase in Ugt1a6a affects GIIS by targeting serotonin or serotonin-related metabolites. Although it is not yet clear exactly which element(s) of the serotonin pathway is/are most responsible for iAs-induced GIIS dysfunction, this study provides evidence that UGT1A6A, acting on the serotonin pathway, regulates GIIS under both normal and pathological conditions.


Asunto(s)
5-Hidroxitriptófano/efectos de los fármacos , Arsénico/farmacología , Diabetes Mellitus/metabolismo , Glucuronosiltransferasa/efectos de los fármacos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Serotonina/metabolismo , 5-Hidroxitriptófano/metabolismo , Adulto , Animales , Línea Celular , Femenino , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Mitocondrias , Consumo de Oxígeno , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA