Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Open Biol ; 14(5): 240014, 2024 May.
Article En | MEDLINE | ID: mdl-38745462

Most successes in computational protein engineering to date have focused on enhancing one biophysical trait, while multi-trait optimization remains a challenge. Different biophysical properties are often conflicting, as mutations that improve one tend to worsen the others. In this study, we explored the potential of an automated computational design strategy, called CamSol Combination, to optimize solubility and stability of enzymes without affecting their activity. Specifically, we focus on Bacillus licheniformis α-amylase (BLA), a hyper-stable enzyme that finds diverse application in industry and biotechnology. We validate the computational predictions by producing 10 BLA variants, including the wild-type (WT) and three designed models harbouring between 6 and 8 mutations each. Our results show that all three models have substantially improved relative solubility over the WT, unaffected catalytic rate and retained hyper-stability, supporting the algorithm's capacity to optimize enzymes. High stability and solubility embody enzymes with superior resilience to chemical and physical stresses, enhance manufacturability and allow for high-concentration formulations characterized by extended shelf lives. This ability to readily optimize solubility and stability of enzymes will enable the rapid and reliable generation of highly robust and versatile reagents, poised to contribute to advancements in diverse scientific and industrial domains.


Bacterial Proteins , Enzyme Stability , Protein Engineering , Solubility , alpha-Amylases , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Amylases/genetics , Protein Engineering/methods , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mutation , Bacillus licheniformis/enzymology , Bacillus licheniformis/genetics , Algorithms , Models, Molecular
2.
Nat Commun ; 14(1): 7475, 2023 11 17.
Article En | MEDLINE | ID: mdl-37978172

Non-natural amino acids are increasingly used as building blocks in the development of peptide-based drugs as they expand the available chemical space to tailor function, half-life and other key properties. However, while the chemical space of modified amino acids (mAAs) such as residues containing post-translational modifications (PTMs) is potentially vast, experimental methods for measuring the developability properties of mAA-containing peptides are expensive and time consuming. To facilitate developability programs through computational methods, we present CamSol-PTM, a method that enables the fast and reliable sequence-based prediction of the intrinsic solubility of mAA-containing peptides in aqueous solution at room temperature. From a computational screening of 50,000 mAA-containing variants of three peptides, we selected five different small-size mAAs for a total number of 37 peptide variants for experimental validation. We demonstrate the accuracy of the predictions by comparing the calculated and experimental solubility values. Our results indicate that the computational screening of mAA-containing peptides can extend by over four orders of magnitude the ability to explore the solubility chemical space of peptides and confirm that our method can accurately assess the solubility of peptides containing mAAs. This method is available as a web server at https://www-cohsoftware.ch.cam.ac.uk/index.php/camsolptm .


Amino Acids , Peptides , Solubility , Peptides/chemistry
3.
Nat Commun ; 14(1): 1937, 2023 04 06.
Article En | MEDLINE | ID: mdl-37024501

Biologics, such as antibodies and enzymes, are crucial in research, biotechnology, diagnostics, and therapeutics. Often, biologics with suitable functionality are discovered, but their development is impeded by developability issues. Stability and solubility are key biophysical traits underpinning developability potential, as they determine aggregation, correlate with production yield and poly-specificity, and are essential to access parenteral and oral delivery. While advances for the optimisation of individual traits have been made, the co-optimization of multiple traits remains highly problematic and time-consuming, as mutations that improve one property often negatively impact others. In this work, we introduce a fully automated computational strategy for the simultaneous optimisation of conformational stability and solubility, which we experimentally validate on six antibodies, including two approved therapeutics. Our results on 42 designs demonstrate that the computational procedure is highly effective at improving developability potential, while not affecting antigen-binding. We make the method available as a webserver at www-cohsoftware.ch.cam.ac.uk.


Antibodies , Proteins , Solubility , Molecular Conformation
4.
Anal Chem ; 95(12): 5362-5368, 2023 03 28.
Article En | MEDLINE | ID: mdl-36930285

Protein-based biologics are highly suitable for drug development as they exhibit low toxicity and high specificity for their targets. However, for therapeutic applications, biologics must often be formulated to elevated concentrations, making insufficient solubility a critical bottleneck in the drug development pipeline. Here, we report an ultrahigh-throughput microfluidic platform for protein solubility screening. In comparison with previous methods, this microfluidic platform can make, incubate, and measure samples in a few minutes, uses just 20 µg of protein (>10-fold improvement), and yields 10,000 data points (1000-fold improvement). This allows quantitative comparison of formulation excipients, such as sodium chloride, polysorbate, histidine, arginine, and sucrose. Additionally, we can measure how solubility is affected by the combinatorial effect of multiple additives, find a suitable pH for the formulation, and measure the impact of mutations on solubility, thus enabling the screening of large libraries. By reducing material and time costs, this approach makes detailed multidimensional solubility optimization experiments possible, streamlining drug development and increasing our understanding of biotherapeutic solubility and the effects of excipients.


Excipients , Microfluidics , Solubility , Polysorbates , Proteins
5.
Brief Bioinform ; 24(2)2023 03 19.
Article En | MEDLINE | ID: mdl-36719110

Solubility is a property of central importance for the use of proteins in research in molecular and cell biology and in applications in biotechnology and medicine. Since experimental methods for measuring protein solubility are material intensive and time consuming, computational methods have recently emerged to enable the rapid and inexpensive screening of solubility for large libraries of proteins, as it is routinely required in development pipelines. Here, we describe the development of one such method to include in the predictions the effect of the pH on solubility. We illustrate the resulting pH-dependent predictions on a variety of antibodies and other proteins to demonstrate that these predictions achieve an accuracy comparable with that of experimental methods. We make this method publicly available at https://www-cohsoftware.ch.cam.ac.uk/index.php/camsolph, as the version 3.0 of CamSol.


Proteins , Software , Cattle , Humans , Albumins/chemistry , Amino Acid Sequence , Antibodies/chemistry , Chickens , Hydrogen-Ion Concentration , Internet , Proteins/chemistry , Solubility , Animals
6.
Biochemistry ; 61(17): 1743-1756, 2022 09 06.
Article En | MEDLINE | ID: mdl-35944093

Parkinson's disease is associated with the aberrant aggregation of α-synuclein. Although the causes of this process are still unclear, post-translational modifications of α-synuclein are likely to play a modulatory role. Since α-synuclein is constitutively N-terminally acetylated, we investigated how this post-translational modification alters the aggregation behavior of this protein. By applying a three-pronged aggregation kinetics approach, we observed that N-terminal acetylation results in a reduced rate of lipid-induced aggregation and slows down both elongation and fibril-catalyzed aggregate proliferation. An analysis of the amyloid fibrils produced by the aggregation process revealed different morphologies for the acetylated and non-acetylated forms in both lipid-induced aggregation and seed-induced aggregation assays. In addition, we found that fibrils formed by acetylated α-synuclein exhibit a lower ß-sheet content. These findings indicate that N-terminal acetylation of α-synuclein alters its lipid-dependent aggregation behavior, reduces its rate of in vitro aggregation, and affects the structural properties of its fibrillar aggregates.


Amyloid , alpha-Synuclein , Acetylation , Amyloid/chemistry , Lipids , Protein Aggregates , Protein Processing, Post-Translational , alpha-Synuclein/chemistry
7.
Sci Rep ; 11(1): 21932, 2021 11 09.
Article En | MEDLINE | ID: mdl-34753962

The solubility of proteins correlates with a variety of their properties, including function, production yield, pharmacokinetics, and formulation at high concentrations. High solubility is therefore a key requirement for the development of protein-based reagents for applications in life sciences, biotechnology, diagnostics, and therapeutics. Accurate solubility measurements, however, remain challenging and resource intensive, which limits their throughput and hence their applicability at the early stages of development pipelines, when long-lists of candidates are typically available in minute amounts. Here, we present an automated method based on the titration of a crowding agent (polyethylene glycol, PEG) to quantitatively assess relative solubility of proteins using about 200 µg of purified material. Our results demonstrate that this method is accurate and economical in material requirement and costs of reagents, which makes it suitable for high-throughput screening. This approach is freely-shared and based on a low cost, open-source liquid-handling robot. We anticipate that this method will facilitate the assessment of the developability of proteins and make it substantially more accessible.

8.
Neurophotonics ; 6(1): 015005, 2019 Jan.
Article En | MEDLINE | ID: mdl-30796881

The goal of understanding the architecture of neural circuits at the synapse level with a brain-wide perspective has powered the interest in high-speed and large field-of-view volumetric imaging at subcellular resolution. Here, we developed a method combining tissue expansion and light-sheet fluorescence microscopy to allow extended volumetric super resolution high-speed imaging of large mouse brain samples. We demonstrate the capabilities of this method by performing two color fast volumetric super resolution imaging of mouse CA1 and dentate gyrus molecular-, granule cell-, and polymorphic layers. Our method enables an exact evaluation of granule cell and neurite morphology within the context of large cell ensembles spanning several orders of magnitude in resolution. We found that imaging a brain region of 1 mm 3 in super resolution using light-sheet fluorescence expansion microscopy is about 17-fold faster than imaging the same region by a current state-of-the-art high-resolution confocal laser scanning microscope.

...