Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Acta Paediatr ; 113(5): 939-946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314886

RESUMEN

AIM: The diagnosis of early-onset neonatal sepsis (EOS) remains difficult. The main aim was to study the effect of a new algorithm for EOS, which includes the level of procalcitonin in umbilical cord blood, on the exposure to antibiotic therapy of premature newborn infants. METHODS: This was a monocentric, observational and retrospective study with before-and-after design. The duration and dose of antibiotic therapy provided as well as the morbidity and mortality were compared in two groups, one included 01 May 2015-30 November 2015 when procalcitonin was not used, and one after the change 01 November 2016-30 May 2017 when procalcitonin was used in a hospital setting in Nice, France. RESULTS: Sixty newborn infants were included in the before group and 54 in the after group. Antibiotic therapy was stopped after 24 h for 18 newborn infants in the after group and four in the before group, and after 48 h for 26 newborn infants in the after group and 10 in the before group. CONCLUSION: The implementation of a new decision-making algorithm including early procalcitonin assay of premature newborn infants significantly reduced exposure to antibiotics without modifying mortality or morbidity.


Asunto(s)
Enfermedades del Recién Nacido , Sepsis Neonatal , Sepsis , Recién Nacido , Lactante , Humanos , Polipéptido alfa Relacionado con Calcitonina , Estudios Retrospectivos , Antibacterianos/uso terapéutico , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/tratamiento farmacológico , Sepsis/diagnóstico , Sepsis/tratamiento farmacológico
2.
Epilepsia ; 61(11): 2474-2485, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33063863

RESUMEN

OBJECTIVE: Autosomal recessive pathogenic variants of the SLC13A5 gene are associated with severe neonatal epilepsy, developmental delay, and tooth hypoplasia/hypodontia. We report on 14 additional patients and compare their phenotypic features to previously published patients to identify the clinical hallmarks of this disorder. METHODS: We collected clinical features of 14 patients carrying biallelic variants in SLC13A5 and performed a PubMed search to identify previously published patients. RESULTS: All patients presented clonic or tonic seizures in the first days of life, evolving into status epilepticus in 57%. Analysis of seizure frequency and developmental milestones divided into five epochs showed an evolutionary trajectory of both items. In the first 3 years of life, 72% of patients had weekly/monthly seizures, often triggered by fever; 14% were seizure-free. Between the ages of 3 and 12 years, 60% become seizure-free; in the following years, up to age 18 years, 57% were seizure-free. After the age of 18 years, all three patients reaching this age were seizure-free. Similarly, 86% of patients at onset presented mild to moderate developmental impairment and diffuse hypotonia. In late childhood, all had developmental delay that was severe in most. Benzodiazepines, phenobarbital, phenytoin, and carbamazepine were the most effective drugs. Eight probands carried heterozygous compound variants, and homozygous pathogenic variants occurred in six. Literature review identified 45 patients carrying SLC13A5 gene pathogenic variants whose clinical features overlapped with our cohort. A peculiar and distinguishing sign is the presence of tooth hypoplasia and/or hypodontia in most patients. SIGNIFICANCE: Autosomal recessive pathogenic variants in SLC13A5 are associated with a distinct neonatal epileptic encephalopathy evolving into severe cognitive and motor impairment, yet with seizures that settle down in late childhood. Tooth hypoplasia or hypodontia remains the peculiar feature. The SLC13A5 gene should be screened in neonatal epileptic encephalopathies; its recessive inheritance has relevance for genetic counseling.


Asunto(s)
Encefalopatías/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Simportadores/genética , Adolescente , Encefalopatías/diagnóstico , Encefalopatías/fisiopatología , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/fisiopatología , Electroencefalografía/tendencias , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Adulto Joven
3.
Hum Mutat ; 35(3): 356-67, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375629

RESUMEN

Mutations in the KCNQ2 and KCNQ3 genes encoding for Kv 7.2 (KCNQ2; Q2) and Kv 7.3 (KCNQ3; Q3) voltage-dependent K(+) channel subunits, respectively, cause neonatal epilepsies with wide phenotypic heterogeneity. In addition to benign familial neonatal epilepsy (BFNE), KCNQ2 mutations have been recently found in families with one or more family members with a severe outcome, including drug-resistant seizures with psychomotor retardation, electroencephalogram (EEG) suppression-burst pattern (Ohtahara syndrome), and distinct neuroradiological features, a condition that was named "KCNQ2 encephalopathy." In the present article, we describe clinical, genetic, and functional data from 17 patients/families whose electroclinical presentation was consistent with the diagnosis of BFNE. Sixteen different heterozygous mutations were found in KCNQ2, including 10 substitutions, three insertions/deletions and three large deletions. One substitution was found in KCNQ3. Most of these mutations were novel, except for four KCNQ2 substitutions that were shown to be recurrent. Electrophysiological studies in mammalian cells revealed that homomeric or heteromeric KCNQ2 and/or KCNQ3 channels carrying mutant subunits with newly found substitutions displayed reduced current densities. In addition, we describe, for the first time, that some mutations impair channel regulation by syntaxin-1A, highlighting a novel pathogenetic mechanism for KCNQ2-related epilepsies.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Sintaxina 1/genética , Animales , Biotinilación , Células CHO , Estudios de Cohortes , Cricetulus , Femenino , Eliminación de Gen , Mutación de Línea Germinal , Humanos , Masculino , Mutagénesis Insercional , Linaje , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...