Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 36(7): 1341-56, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18420785

RESUMEN

This study describes the in vitro metabolism of [(14)C]dasatinib in liver tissue incubations from rat, monkey, and human and the in vivo metabolism in rat and monkey. Across species, dasatinib underwent in vitro oxidative metabolism to form five primary oxidative metabolites. In addition to the primary metabolites, secondary metabolites formed from combinations of the oxidative pathways and conjugated metabolites of dasatinib and its oxidative metabolites were also observed in hepatocytes incubations. In in vivo studies in rats and monkeys, the majority of the radioactive dose was excreted in the bile and feces. In bile duct-cannulated monkeys after an i.v. dose, 13.7% of the radioactive dose was excreted in the feces through direct secretion. Dasatinib comprised 56 and 26% of the area under the curve (AUC) (0-8 h) of total radioactivity (TRA) in plasma, whereas multiple metabolites accounted for the remaining 44 and 74% of the AUC (0-8 h) of TRA for rats and monkeys, respectively. In rat and monkey bile, dasatinib accounted for < 12% of the excreted dose, suggesting that dasatinib was extensively metabolized before elimination. The metabolic profiles in bile were similar to the hepatocyte profiles. In both species, a large portion of the radioactivity excreted in bile (> or = 29% of the dose) was attributed to N-oxides and conjugated metabolites. In rat and monkey feces, only the oxidative metabolites and their further oxidation products were identified. The absence of conjugative or N-oxide metabolites in the feces suggests hydrolysis or reduction, respectively, in the gastrointestinal tract before elimination.


Asunto(s)
Radioisótopos de Carbono/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/farmacocinética , Tiazoles/farmacocinética , Animales , Área Bajo la Curva , Biotransformación , Dasatinib , Hepatocitos/metabolismo , Humanos , Macaca fascicularis , Espectroscopía de Resonancia Magnética , Masculino , Microsomas Hepáticos/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/sangre , Pirimidinas/administración & dosificación , Pirimidinas/sangre , Ratas , Ratas Sprague-Dawley , Tiazoles/administración & dosificación , Tiazoles/sangre
2.
Nucl Med Biol ; 31(5): 613-21, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15219280

RESUMEN

Stavudine, a potent antiviral agent for treating human immunodeficiency virus (HIV) infections, was radiolabeled with (11)C by methylation of a specifically designed precursor, 5'-O-(2-tetrahydropyranyl)-5-bromo-2',3'-didehydro-3'-deoxythymidine, with (11)C H(3)I. The radiolabeled drug was isolated by reverse phase HPLC. A total time of approximately 45 minutes was required for synthesis, purification and isolation of (11)C stavudine with chemical and radiochemical purities of greater than 98%. (11)C stavudine was combined with unlabeled drug (2.0 mg/kg) and used to study its pharmacokinetics in rats by measurement of radioactivity in excised tissues. In this species, there was rapid accumulation of drug in all tissue. In all tissues, with the exceptions of testis and brain, highest concentrations of drug were detected at 5 minutes after injection and decreased monotonically thereafter. The peak concentration (microg/g) of stavudine in blood was 1.78 +/- 0.16 and similar levels were achieved in most other tissues; heart 1.66 +/- 0.11, lung 1.60 +/- 0.15, liver 2.13 +/- 0.17, spleen 1.61 +/- 0.15, adrenal 1.47 +/- 0.20, stomach 1.40 +/- 0.11, GI tract 1.44 +/- 0.14, skeletal muscle 1.38 +/- 0.15 and bone 1.30 +/- 0.16. Much higher peak concentrations were achieved in kidney; 7.23 +/- 0.57 microg/g. Concentrations in testis were lower and remained relatively constant over 1 hour; peak 0.62 +/- 0.14 microg/g at 15 min Brain concentrations were low but increased monotonically over time; peak 0.26 +/- 0.02 microg/g at 60 min. Future PET studies with this radiopharmaceutical will allow in vivo measurements of the pharmacokinetics of stavudine in both animal models and human subjects.


Asunto(s)
Estavudina/farmacocinética , Animales , Radioisótopos de Carbono/química , Radioisótopos de Carbono/farmacocinética , Marcaje Isotópico/métodos , Masculino , Tasa de Depuración Metabólica , Especificidad de Órganos , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Estavudina/síntesis química , Distribución Tisular
3.
Drug Metab Dispos ; 31(7): 837-45, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12814959

RESUMEN

(3S)-(+)-(5-Chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)-2H-indole-2-one) (MaxiPost, BMS-204352) is a potent and specific opener for maxi-K channels and has potential to prevent and treat ischemic stroke. Following single intravenous doses of [14C]BMS-204352 to rats, only 10 to 12% of radioactivity was extractable from plasma with organic solvents. The unextractable radioactivity remained associated with the proteins (mostly albumin) after SDS-polyacrylamide gel electrophoresis or dialysis. Following acid hydrolysis in 6 M HCl for 24 h at 110 degrees C from plasma proteins collected from nine rats dosed with [14C]BMS-204352, one major radioactive product was isolated and identified as a lysine-adduct of des-fluoro des-O-methyl BMS-204352 by liquid chromatography/mass spectrometry and NMR analyses as well as by comparison with the synthetic analog, lysine-adduct of des-fluoro BMS-204352 (BMS-349821). The covalent binding of BMS-204352 results from the displacement of the ring-fluorine atom of des-O-methyl BMS-204352 with the epsilon-amino group of a lysine residue. Microsomal incubations of [14C]BMS-204352 resulted in low levels of covalent binding of radioactivity to proteins. This in vitro covalent binding required cytochrome P450-reductase cofactor NADPH and was attenuated by glutathione. P4503A inhibitors ketoconazole and troleadomycin selectively prevented the covalent binding in vitro. Based on these observations, a two-step bioactivation process for the protein covalent binding of BMS-204352 was postulated: 1) P4503A-mediated O-demethylation leading to spontaneous release of HF and the formation of an ortho-quinone methide reactive metabolite and 2) nucleophilic addition of the epsilon-amino group of protein lysine residue(s) in protein to form des-fluoro des-O-methyl BMS-204352 lysine adduct.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Indolquinonas/sangre , Indoles/sangre , Indoles/farmacocinética , Unión Proteica/efectos de los fármacos , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Proteínas Sanguíneas/efectos de los fármacos , Proteínas Sanguíneas/aislamiento & purificación , Proteínas Sanguíneas/metabolismo , Radioisótopos de Carbono/administración & dosificación , Radioisótopos de Carbono/sangre , Indoles/administración & dosificación , Indoles/metabolismo , Inyecciones Intravenosas , Masculino , Unión Proteica/fisiología , Ensayo de Unión Radioligante , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...