Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
FASEB J ; 37(6): e22957, 2023 06.
Article En | MEDLINE | ID: mdl-37219463

Cross talk between immune cells and the intestinal crypt is critical in maintaining intestinal homeostasis. Recent studies highlight the direct impact of vitamin D receptor (VDR) signaling on intestinal and microbial homeostasis. However, the tissue-specific role of immune VDR signaling is not fully understood. Here, we generated a myeloid-specific VDR knockout (VDRΔLyz ) mouse model and used a macrophage/enteroids coculture system to examine tissue-specific VDR signaling in intestinal homeostasis. VDRΔLyz mice exhibited small intestine elongation and impaired Paneth cell in maturation and localization. Coculture of enteroids with VDR-/- macrophages increased the delocalization of Paneth cells. VDRΔLyz mice exhibited significant changes in the microbiota taxonomic and functional files, and susceptibility to Salmonella infection. Interestingly, loss of myeloid VDR impaired Wnt secretion in macrophages, thus inhibiting crypt ß-catenin signaling and disrupting Paneth cell differentiation in the epithelium. Taken together, our data have demonstrated that myeloid cells regulate crypt differentiation and the microbiota in a VDR-dependent mechanism. Dysregulation of myeloid VDR led to high risks of colitis-associated diseases. Our study provided insight into the mechanism of immune/Paneth cell cross talk in regulating intestinal homeostasis.


Paneth Cells , Receptors, Calcitriol , Animals , Mice , Epithelium , Signal Transduction , Homeostasis
2.
Metabolites ; 12(12)2022 Dec 12.
Article En | MEDLINE | ID: mdl-36557291

Microbial metabolites affect the neuron system and muscle cell functions. Amyotrophic lateral sclerosis (ALS) is a multifactorial neuromuscular disease. Our previous study has demonstrated elevated intestinal inflammation and dysfunction of the microbiome in patients with ALS and an ALS mouse model (human-SOD1G93A transgenic mice). However, the metabolites in ALS progression are unknown. Using an unbiased global metabolomic measurement and targeted measurement, we investigated the longitudinal changes of fecal metabolites in SOD1G93A mice over the course of 13 weeks. We further compared the changes of metabolites and inflammatory response in age-matched wild-type (WT) and SOD1G93A mice treated with the bacterial product butyrate. We found changes in carbohydrate levels, amino acid metabolism, and the formation of gamma-glutamyl amino acids. Shifts in several microbially contributed catabolites of aromatic amino acids agree with butyrate-induced changes in the composition of the gut microbiome. Declines in gamma-glutamyl amino acids in feces may stem from differential expression of gamma-glutamyltransferase (GGT) in response to butyrate administration. Due to the signaling nature of amino acid-derived metabolites, these changes indicate changes in inflammation, e.g., histamine, and contribute to differences in systemic levels of neurotransmitters, e.g., γ-Aminobutyric acid (GABA) and glutamate. Butyrate treatment was able to restore some of the healthy metabolites in ALS mice. Moreover, microglia in the spinal cord were measured by IBA1 staining. Butyrate treatment significantly suppressed the IBA1 level in the SOD1G93A mice. Serum IL-17 and LPS were significantly reduced in the butyrate-treated SOD1G93A mice. We have demonstrated an inter-organ communications link among microbial metabolites, neuroactive metabolites from the gut, and inflammation in ALS progression. The study supports the potential to use metabolites as ALS hallmarks and for treatment.

3.
Gut Microbes ; 13(1): 1996848, 2021.
Article En | MEDLINE | ID: mdl-34812107

Amyotrophic Lateral Sclerosis is a neuromuscular disease characterized by the progressive death of motor neurons and muscle atrophy. The gastrointestinal symptoms in ALS patients were largely ignored or underestimated. The relationship between the enteric neuromuscular system and microbiome in ALS progression is unknown. We performed longitudinal studies on the enteric neuron system (ENS) and microbiome in the ALS human-SOD1G93A (Superoxide Dismutase 1) transgenic mice. We treated age-matched wild-type and ALS mice with butyrate or antibiotics to investigate the microbiome and neuromuscular functions. We examined intestinal mobility, microbiome, an ENS marker GFAP (Glial Fibrillary Acidic Protein), a smooth muscle marker (SMMHC, Smooth Muscle Myosin Heavy Chain), and human colonoids. The distribution of human-G93A-SOD1 protein was tested as an indicator of ALS progression. At 2-month-old before ALS onset, SOD1G93A mice had significantly lower intestinal mobility, decreased grip strength, and reduced time in the rotarod. We observed increased GFAP and decreased SMMHC expression. These changes correlated with consistent increased aggregation of mutated SOD1G93A in the colon, small intestine, and spinal cord. Butyrate or antibiotics treated SOD1G93A mice had a significantly longer latency to fall in the rotarod test, reduced SOD1G93A aggregation, and enhanced enteric neuromuscular function. Feces from 2-month-old SOD1G93A mice significantly enhanced SOD1G93A aggregation in human colonoids transfected with a SOD1G93A-GFP plasmid. Longitudinal studies of microbiome data further showed the altered bacterial community related to autoimmunity (e.g., Clostridium sp. ASF502, Lachnospiraceae bacterium A4), inflammation (e.g., Enterohabdus Muris,), and metabolism (e.g., Desulfovibrio fairfieldensis) at 1- and 2-month-old SOD1G93A mice, suggesting the early microbial contribution to the pathological changes. We have demonstrated a novel link between the microbiome, hSOD1G93A aggregation, and intestinal mobility. Dysbiosis occurred at the early stage of the ALS mice before observed mutated-SOD1 aggregation and dysfunction of ENS. Manipulating the microbiome improves the muscle performance of SOD1G93A mice. We provide insights into the fundamentals of intestinal neuromuscular function and microbiome in ALS.


Amyotrophic Lateral Sclerosis/microbiology , Dysbiosis/microbiology , Enteric Nervous System/physiopathology , Muscle, Smooth/physiopathology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Anti-Bacterial Agents/therapeutic use , Butyrates/therapeutic use , Disease Models, Animal , Dysbiosis/drug therapy , Dysbiosis/physiopathology , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Motility/drug effects , Humans , Intestine, Small/innervation , Intestine, Small/metabolism , Intestine, Small/pathology , Intestine, Small/physiopathology , Longitudinal Studies , Mice , Mice, Transgenic , Muscle Strength/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/microbiology , Protein Aggregation, Pathological/physiopathology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
4.
Open Biol ; 10(7): 200063, 2020 07.
Article En | MEDLINE | ID: mdl-32634371

The gut microbiome regulates a relationship with the brain known as the gut-microbiota-brain (GMB) axis. This interaction is influenced by immune cells, microbial metabolites and neurotransmitters. Recent findings show gut dysbiosis is prevalent in autism spectrum disorder (ASD) as well as attention deficit hyperactivity disorder (ADHD). There are previously established negative correlations among vitamin D, vitamin D receptor (VDR) levels and severity of ASD as well as ADHD. Both vitamin D and VDR are known to regulate homeostasis in the brain and the intestinal microbiome. This review summarizes the growing relationship between vitamin D/VDR signalling and the GMB axis in ASD and ADHD. We focus on current publications and summarize the progress of GMB in neurodevelopmental disorders, describe effects and mechanisms of vitamin D/VDR in regulating the microbiome and synoptically highlight the potential applications of targeting vitamin D/VDR signalling in neurodevelopment disorders.


Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Receptors, Calcitriol/genetics , Vitamin D/genetics , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/microbiology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/microbiology , Brain/metabolism , Brain/microbiology , Dysbiosis/genetics , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Humans , Signal Transduction/genetics , Vitamin D/metabolism
...