Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
iScience ; 26(10): 107813, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37810211

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

2.
Science ; 376(6589): eabf1970, 2022 04 08.
Article En | MEDLINE | ID: mdl-35389781

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Knowledge of circulating immune cell types and states associated with SLE remains incomplete. We profiled more than 1.2 million peripheral blood mononuclear cells (162 cases, 99 controls) with multiplexed single-cell RNA sequencing (mux-seq). Cases exhibited elevated expression of type 1 interferon-stimulated genes (ISGs) in monocytes, reduction of naïve CD4+ T cells that correlated with monocyte ISG expression, and expansion of repertoire-restricted cytotoxic GZMH+ CD8+ T cells. Cell type-specific expression features predicted case-control status and stratified patients into two molecular subtypes. We integrated dense genotyping data to map cell type-specific cis-expression quantitative trait loci and to link SLE-associated variants to cell type-specific expression. These results demonstrate mux-seq as a systematic approach to characterize cellular composition, identify transcriptional signatures, and annotate genetic variants associated with SLE.


Interferon Type I , Lupus Erythematosus, Systemic , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Humans , Interferon Type I/metabolism , Leukocytes, Mononuclear , Lupus Erythematosus, Systemic/genetics , RNA-Seq , Transcription, Genetic
3.
Sci Transl Med ; 13(612): eabh2624, 2021 Sep 22.
Article En | MEDLINE | ID: mdl-34429372

Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, we found type I IFN­specific autoantibodies in peripheral blood samples from 19% of patients with critical disease and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate disease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non­COVID-19 controls revealed a lack of type I IFN­stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN­specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with critical COVID-19 with and without type I IFN­specific autoantibodies supports a unifying model for disease pathogenesis involving ISG-I suppression through convergent mechanisms.


Autoantibodies , COVID-19 , Interferon Type I , Autoantibodies/immunology , COVID-19/immunology , Humans , Interferon Type I/immunology
4.
Nat Methods ; 18(8): 903-911, 2021 08.
Article En | MEDLINE | ID: mdl-34354295

The development of DNA-barcoded antibodies to tag cell surface molecules has enabled the use of droplet-based single-cell sequencing (dsc-seq) to profile protein abundances from thousands of cells simultaneously. As compared to flow and mass cytometry, the high per cell cost of current dsc-seq-based workflows precludes their use in clinical applications and large-scale pooled screens. Here, we introduce SCITO-seq, a workflow that uses splint oligonucleotides (oligos) to enable combinatorially indexed dsc-seq of DNA-barcoded antibodies from over 105 cells per reaction using commercial microfluidics. By encoding sample barcodes into splint oligos, we demonstrate that multiplexed SCITO-seq produces reproducible estimates of cellular composition and surface protein expression comparable to those from mass cytometry. We further demonstrate two modified splint oligo designs that extend SCITO-seq to achieve compatibility with commercial DNA-barcoded antibodies and simultaneous expression profiling of the transcriptome and surface proteins from the same cell. These results demonstrate SCITO-seq as a flexible and ultra-high-throughput platform for sequencing-based single-cell protein and multimodal profiling.


Flow Cytometry/methods , High-Throughput Nucleotide Sequencing/methods , Microfluidics/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome , Case-Control Studies , Gene Expression Profiling , Humans
5.
Methods Enzymol ; 655: 37-72, 2021.
Article En | MEDLINE | ID: mdl-34183130

Alternative polyadenylation (APA) is a widespread and highly dynamic mechanism of gene regulation. It affects more than 70% of all genes, resulting in transcript isoforms with distinct 3' end termini. APA thereby considerably expands the diversity of the transcriptome 3' end (TREND). This leads to mRNA isoforms with profoundly different physiological effects, by affecting protein output, production of distinct protein isoforms, or modulating protein localization. APA is globally regulated in various conditions, including developmental and adaptive programs. Since perturbations of APA can disrupt biological processes, ultimately resulting in most devastating disorders, querying the APA landscape is crucial to decipher underlying mechanisms, resulting consequences and potential diagnostic and therapeutic implications. Here we provide a detailed step-by-step protocol for TRENDseq, a method for transcriptome-wide high-throughput sequencing of polyadenylated RNA 3' ends in a highly multiplexed fashion. TRENDseq exploits linear amplification of the starting material to improve sensitivity while significantly reducing the amount of input material. It thereby represents a powerful tool to study APA in numerous experimental set-ups and/or limited human samples in a highly multiplexed and reproducible manner.


High-Throughput Nucleotide Sequencing , Polyadenylation , 3' Untranslated Regions , Gene Expression Regulation , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
6.
bioRxiv ; 2021 Mar 10.
Article En | MEDLINE | ID: mdl-33758859

Type I interferon (IFN-I) neutralizing autoantibodies have been found in some critical COVID-19 patients; however, their prevalence and longitudinal dynamics across the disease severity scale, and functional effects on circulating leukocytes remain unknown. Here, in 284 COVID-19 patients, we found IFN-I autoantibodies in 19% of critical, 6% of severe and none of the moderate cases. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 COVID-19 patients, 15 non-COVID-19 patients and 11 non-hospitalized healthy controls, revealed a lack of IFN-I stimulated gene (ISG-I) response in myeloid cells from critical cases, including those producing anti-IFN-I autoantibodies. Moreover, surface protein analysis showed an inverse correlation of the inhibitory receptor LAIR-1 with ISG-I expression response early in the disease course. This aberrant ISG-I response in critical patients with and without IFN-I autoantibodies, supports a unifying model for disease pathogenesis involving ISG-I suppression via convergent mechanisms.

7.
Nat Commun ; 9(1): 5331, 2018 12 14.
Article En | MEDLINE | ID: mdl-30552333

Diversification at the transcriptome 3'end is an important and evolutionarily conserved layer of gene regulation associated with differentiation and dedifferentiation processes. Here, we identify extensive transcriptome 3'end-alterations in neuroblastoma, a tumour entity with a paucity of recurrent somatic mutations and an unusually high frequency of spontaneous regression. Utilising extensive RNAi-screening we reveal the landscape and drivers of transcriptome 3'end-diversification, discovering PCF11 as critical regulator, directing alternative polyadenylation (APA) of hundreds of transcripts including a differentiation RNA-operon. PCF11 shapes inputs converging on WNT-signalling, and governs cell cycle, proliferation, apoptosis and neurodifferentiation. Postnatal PCF11 down-regulation induces a neurodifferentiation program, and low-level PCF11 in neuroblastoma associates with favourable outcome and spontaneous tumour regression. Our findings document a critical role for APA in tumorigenesis and describe a novel mechanism for cell fate reprogramming in neuroblastoma with potentially important clinical implications. We provide an interactive data repository of transcriptome-wide APA covering > 170 RNAis, and an APA-network map with regulatory hubs.


3' Untranslated Regions , Neuroblastoma/metabolism , Neuroblastoma/pathology , Polyadenylation , mRNA Cleavage and Polyadenylation Factors/metabolism , Apoptosis/physiology , Carcinogenesis , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Genome-Wide Association Study , Humans , Neuroblastoma/genetics , Neurons/pathology , RNA, Messenger/metabolism , Transcriptome , mRNA Cleavage and Polyadenylation Factors/genetics
8.
Pflugers Arch ; 468(6): 993-1012, 2016 06.
Article En | MEDLINE | ID: mdl-27220521

The human transcriptome is highly dynamic, with each cell type, tissue, and organ system expressing an ensemble of transcript isoforms that give rise to considerable diversity. Apart from alternative splicing affecting the "body" of the transcripts, extensive transcriptome diversification occurs at the 3' end. Transcripts differing at the 3' end can have profound physiological effects by encoding proteins with distinct functions or regulatory properties or by affecting the mRNA fate via the inclusion or exclusion of regulatory elements (such as miRNA or protein binding sites). Importantly, the dynamic regulation at the 3' end is associated with various (patho)physiological processes, including the immune regulation but also tumorigenesis. Here, we recapitulate the mechanisms of constitutive mRNA 3' end processing and review the current understanding of the dynamically regulated diversity at the transcriptome 3' end. We illustrate the medical importance by presenting examples that are associated with perturbations of this process and indicate resulting implications for molecular diagnostics as well as potentially arising novel therapeutic strategies.


3' Untranslated Regions , Gene Expression Regulation, Neoplastic , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Transcriptome , Animals , Humans , RNA, Messenger/genetics
...