Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39322220

RESUMEN

All-solid-state fluoride batteries have the potential to achieve energy densities significantly higher than those of lithium-ion batteries. A common cathode material for fluoride batteries is Cu. Cu has a low polarization, but its rapid capacity degradation due to grain growth and subsequent delamination from the solid-state electrolyte are critical issues. To enhance the performance of Cu-based cathodes in all-solid-state fluoride batteries, we explore alloying of Cu with Ni to create metastable solid solution phases (CuxNi1-x with x = 0, 0.32, 0.52, 0.72, 0.89, and 1.0). Compared to Cu, Ni has a higher polarization but exhibits superior capacity retention. The Cu0.72Ni0.28 alloy demonstrates a polarization as low as Cu, but it has a significantly improved capacity retention, which is comparable to Ni. Transmission electron microscopy observations demonstrate that the thin Ni-rich region formed near the interface inhibits Cu grain growth and delamination from the LaF3 electrolyte. By incorporating an appropriate amount of Ni into Cu, Cu-Ni alloy films combine the advantages of both metals, improving the performance of fluoride batteries.

2.
Sci Rep ; 10(1): 10048, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572042

RESUMEN

Lithium- and manganese-rich layered oxides (LMRs) are promising positive electrode materials for next-generation rechargeable lithium-ion batteries. Herein, the structural evolution of Li1.2Ni0.2Mn0.6O2 during the initial charge-discharge cycle was examined using synchrotron-radiation X-ray diffraction, X-ray absorption spectroscopy, and nuclear magnetic resonance spectroscopy to elucidate the unique delithiation behavior. The pristine material contained a composite layered structure composed of Ni-free and Ni-doped Li2MnO3 and LiMO2 (M = Ni, Mn) nanoscale domains, and Li ions were sequentially and inhomogeneously extracted from the composite structure. Delithiation from the LiMO2 domain was observed in the potential slope region associated with the Ni2+/Ni4+ redox couple. Li ions were then extracted from the Li2MnO3 domain during the potential plateau and remained mostly in the Ni-doped Li2MnO3 domain at 4.8 V. In addition, structural transformation into a spinel-like phase was partly observed, which is associated with oxygen loss and cation migration within the Li2MnO3 domain. During Li intercalation, cation remigration and mixing resulted in a domainless layered structure with a chemical composition similar to that of LiNi0.25Mn0.75O2. After the structural activation, the Li ions were reversibly extracted from the newly formed domainless structure.

3.
ChemSusChem ; 12(2): 527-534, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30450797

RESUMEN

Fluoride shuttle batteries (FSBs), which utilize defluorination of metal fluorides and fluorination of the resultant metals, are expected to have high energy densities. In situ Raman microscopy was conducted during FSB reactions of a nearly-2D cluster of orthorhombic BiF3 microparticles partly embedded in a gold-plated film (o-BiF3 /gold). At a high overpotential, defluorination of the surface of an o-BiF3 particle (or cluster) was almost completed within approximately 120 s. At a low over potential, defluorination proceeded from the contours of the cluster that was in contact with the gold to the center of the cluster, suggesting that the rate-limiting process was electronic diffusion. Conversely, fluorination proceeded uniformly at the surface of the cluster to form BiF3 with a cubic structure (c-BiF3 ). The results will lead to the establishment of a strategy for efficient use of active materials with low electronic and ionic conductivities.

4.
Sci Rep ; 8(1): 15086, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305719

RESUMEN

The charge-discharge capacity of lithium secondary batteries is dependent on how many lithium ions can be reversibly extracted from (charge) and inserted into (discharge) the electrode active materials. In contrast, large structural changes during charging/discharging are unavoidable for electrode materials with large capacities, and thus there is great demand for developing materials with reversible structures. Herein, we demonstrate a reversible rocksalt to amorphous phase transition involving anion redox in a Li2TiS3 electrode active material with NaCl-type structure. We revealed that the lithium extraction during charging involves a change in site of the sulfur atom and the formation of S-S disulfide bonds, leading to a decrease in the crystallinity. Our results show great promise for the development of long-life lithium insertion/extraction materials, because the structural change clarified here is somewhat similar to that of optical phase-change materials used in DVD-RW discs, which exhibit excellent reversibility of the transition between crystalline and amorphous phase.

5.
J Chem Phys ; 147(12): 124701, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28964018

RESUMEN

Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

6.
J Am Chem Soc ; 139(26): 8796-8799, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28618780

RESUMEN

A unique charge/discharge mechanism of amorphous TiS4 is reported. Amorphous transition metal polysulfide electrodes exhibit anomalous charge/discharge performance and should have a unique charge/discharge mechanism: neither the typical intercalation/deintercalation mechanism nor the conversion-type one, but a mixture of the two. Analyzing the mechanism of such electrodes has been a challenge because fewer tools are available to examine the "amorphous" structure. It is revealed that the electrode undergoes two distinct structural changes: (i) the deformation and formation of S-S disulfide bonds and (ii) changes in the coordination number of titanium. These structural changes proceed continuously and concertedly for Li insertion/extraction. The results of this study provide a novel and unique model of amorphous electrode materials with significantly larger capacities.

7.
ChemSusChem ; 10(14): 2864-2868, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28544652

RESUMEN

Here, we report remarkable oxygen evolution reaction (OER) catalytic activity of brownmillerite (BM)-type Ca2 FeCoO5 . The OER activity of this oxide is comparable to or beyond those of the state-of-the-art perovskite (PV)-catalyst Ba0.5 Sr0.5 Co0.8 Fe0.2 O3-δ (BSCF) and a precious-metal catalyst RuO2 , emphasizing the importance of the characteristic BM structure with multiple coordination environments of transition metal (TM) species. Also, Ca2 FeCoO5 is clearly advantageous in terms of expense/laboriousness of the material synthesis. These facts make this oxide a promising OER catalyst used in many energy conversion technologies such as metal-air secondary batteries and hydrogen production from electrochemical/photocatalytic water splitting.


Asunto(s)
Cobalto/química , Compuestos de Hierro/química , Óxidos/química , Oxígeno/química , Catálisis , Modelos Moleculares , Conformación Molecular
8.
ChemSusChem ; 10(5): 855-861, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-27925412

RESUMEN

Lithium-ion batteries have attracted considerable attention due to their high power density. The change in concentration of salt in the electrolyte solution in lithium-ion batteries during operation causes serious degradation of battery performance. Herein, a new method of in situ Raman spectroscopy with ultrafine multifiber probes was developed to simultaneously study the concentrations of ions at several different positions in the electrolyte solution in deep narrow spaces between the electrodes in batteries. The total amount of ions in the electrolyte solution clearly changed during operation due to the low permeability of the solid-electrolyte interphase (SEI) at the anode for Li+ permeation. The permeability, which is a key factor to achieve high battery performance, was improved (enhanced) by adding film-forming additives to the electrolyte solution to modify the properties of the SEI. The results provide important information for understanding and predicting phenomena occurring in a battery and for designing a superior battery. The present method is useful for analysis in deep narrow spaces in other electrochemical devices, such as capacitors.


Asunto(s)
Suministros de Energía Eléctrica , Litio/química , Sales (Química)/química , Electrodos , Espectrometría Raman
9.
Phys Chem Chem Phys ; 18(32): 22426-33, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27465798

RESUMEN

The degradation mechanism of a graphite negative-electrode in LiPF6-based electrolyte solution was investigated using the basal plane of highly oriented pyrolytic graphite (HOPG) as a model electrode. Changes in the surface morphology were observed by in situ atomic force microscopy. In the initial cathodic scan, a number of pits appeared at around 1.75 V vs. Li(+)/Li, and fine particles formed on the terrace of the HOPG basal plane at about 1.5 V vs. Li(+)/Li. The fine particles were characterized by spectroscopic analysis, such as X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. We added one of the components to LiClO4-based electrolyte solution, and successfully reproduced the formation of pits and fine particles on the basal plane of HOPG. Based on these results, the formation mechanisms of pits and fine particle layers were proposed.

10.
Sci Rep ; 6: 28843, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357605

RESUMEN

Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.

11.
J Phys Chem Lett ; 7(11): 2063-7, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27195427

RESUMEN

We examined the crystal structures of Li2(NixMn1-x)O3(-δ) (x = 0, 1/10, 1/6, and 1/4) to elucidate the relationship between the structure and electrochemical performance of the compounds using neutron and synchrotron X-ray powder diffraction analyses in combination. Our examination revealed that these crystals contain a large number of stacking faults and exhibit significant cation mixing in the transition-metal layers; the cation mixing becomes significant with an increase in the Ni concentration. Charge-discharge measurements showed that the replacement of Mn with Ni lowers the potential of the charge plateau and leads to higher charge-discharge capacities. From a topological point of view with regard to the atomic arrangement in the crystals, it is concluded that substituting Mn in Li2MnO3 with Ni promotes the formation of smooth Li percolation paths, thus increasing the number of active Li ions and improving the charge-discharge capacity.

12.
Sci Rep ; 6: 26382, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193448

RESUMEN

Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

13.
Sci Rep ; 6: 21302, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26892385

RESUMEN

The atomic and electronic structures of binary Li2S-P2S5 glasses used as solid electrolytes are modeled by a combination of density functional theory (DFT) and reverse Monte Carlo (RMC) simulation using synchrotron X-ray diffraction, neutron diffraction, and Raman spectroscopy data. The ratio of PSx polyhedral anions based on the Raman spectroscopic results is reflected in the glassy structures of the 67Li2S-33P2S5, 70Li2S-30P2S5, and 75Li2S-25P2S5 glasses, and the plausible structures represent the lithium ion distributions around them. It is found that the edge sharing between PSx and LiSy polyhedra increases at a high Li2S content, and the free volume around PSx polyhedra decreases. It is conjectured that Li(+) ions around the face of PSx polyhedra are clearly affected by the polarization of anions. The electronic structure of the DFT/RMC model suggests that the electron transfer between the P ion and the bridging sulfur (BS) ion weakens the positive charge of the P ion in the P2S7 anions. The P2S7 anions of the weak electrostatic repulsion would causes it to more strongly attract Li(+) ions than the PS4 and P2S6 anions, and suppress the lithium ionic conduction. Thus, the control of the edge sharing between PSx and LiSy polyhedra without the electron transfer between the P ion and the BS ion is expected to facilitate lithium ionic conduction in the above solid electrolytes.

14.
Phys Chem Chem Phys ; 18(3): 1897-904, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26686382

RESUMEN

LiNi0.5Mn1.5O4 (LNMO) is a promising positive electrode material for lithium ion batteries because it shows a high potential of 4.7 V vs. Li/Li(+). Its charge-discharge reaction includes two consecutive phase transitions between LiNi0.5Mn1.5O4 (Li1) ↔ Li0.5Ni0.5Mn1.5O4 (Li0.5) and Li0.5 ↔ Ni0.5Mn1.5O4 (Li0) and the complex transition kinetics that governs the rate capability of LNMO can hardly be analyzed by simple electrochemical techniques. Herein, we apply temperature-controlled operando X-ray absorption spectroscopy to directly capture the reacting phases from -20 °C to 40 °C under potential step (chronoamperometric) conditions and evaluate the phase transition kinetics using the apparent first-order rate constants at various temperatures. The constant for the Li1 ↔ Li0.5 transition (process 1) is larger than that for the Li0.5 ↔ Li0 transition (process 2) at all the measured temperatures, and the corresponding activation energies are 29 and 46 kJ mol(-1) for processes 1 and 2, respectively. The results obtained are discussed to elucidate the limiting factor in this system as well as in other electrode systems.

15.
Rev Sci Instrum ; 85(8): 084103, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25173283

RESUMEN

A novel spectro-electochemical cell for X-ray absorption spectroscopy in the tender X-ray region (TX-XAS) was designed and fabricated to investigate the electrochemical behavior of common battery materials with liquid electrolytes under in situ/operando conditions. The cell has several unique features, such as high X-ray transmittance, high signal to noise ratio, and high vacuum tightness. These features enable us quick and reliable XAS measurements. Operando P K-edge XAS measurements of an olivine-type LiFePO4 composite positive electrode were carried out to clarify its phosphorus environment during the electrochemical charging process. Results of spectral analysis show that there is no significant change in the oxidation state of phosphorus and in the coordination of the phosphate anions in the charging process, but a closer look of the consecutive XAS spectra suggests the shrinkage of the PO4 cage during the charging process, and the structural changes in a biphasic manner. These results demonstrate the usefulness of the cell for in situ/operando TX-XAS observations of light elements in practical batteries.

16.
Sci Rep ; 4: 4883, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24811191

RESUMEN

One way of increasing the energy density of lithium-ion batteries is to use electrode materials that exhibit high capacities owing to multielectron processes. Here, we report two novel materials, Li2TiS3 and Li3NbS4, which were mechanochemically synthesised at room temperature. When used as positive-electrode materials, Li2TiS3 and Li3NbS4 charged and discharged with high capacities of 425 mA h g(-1) and 386 mA h g(-1), respectively. These capacities correspond to those resulting from 2.5- and 3.5-electron processes. The average discharge voltage was approximately 2.2 V. It should be possible to prepare a number of high-capacity materials on the basis of the concept used to prepare Li2TiS3 and Li3NbS4.

17.
J Am Chem Soc ; 135(15): 5497-500, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23544671

RESUMEN

The phase transition between LiFePO4 and FePO4 during nonequilibrium battery operation was tracked in real time using time-resolved X-ray diffraction. In conjunction with increasing current density, a metastable crystal phase appears in addition to the thermodynamically stable LiFePO4 and FePO4 phases. The metastable phase gradually diminishes under open-circuit conditions following electrochemical cycling. We propose a phase transition path that passes through the metastable phase and posit the new phase's role in decreasing the nucleation energy, accounting for the excellent rate capability of LiFePO4. This study is the first to report the measurement of a metastable crystal phase during the electrochemical phase transition of LixFePO4.

18.
J Magn Reson ; 231: 66-71, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23588156

RESUMEN

We examine applicability of rotation-synchronized Delays Alternating with Nutation for Tailored Excitation (rs-DANTE) to a crowded sideband spectrum spreading over a few 100 kHz by the paramagnetic interaction. It is shown that rs-DANTE can be used to excite (6)Li spinning sideband manifolds of the three crystallographic Li sites (2b, 4h, and 2c) in a magic-angle spinning (MAS) spectrum of (6)Li-enriched Li2MnO3. The observed lineshape is insensitive to rf inhomogeneiety, thus indicating practical applicability of rs-DANTE to a paramagnetic system. Each sideband pattern can be described by the paramagnetic anisotropies evaluated by taking the electron-(6)Li dipolar interactions into account. The isotropic chemical shift for each site can thus be obtained by comparing the experimental sideband pattern to the calculated one. It is therefore possible by this approach to obtain both isotropic and anisotropic shift information. Further effects of structural disorder in Li2MnO3 on the isotropic shift and the sideband pattern are discussed.


Asunto(s)
Algoritmos , Litio/análisis , Litio/química , Espectroscopía de Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Isótopos/análisis , Isótopos/química , Campos Magnéticos , Marcadores de Spin
20.
Phys Chem Chem Phys ; 14(31): 11135-8, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22763822

RESUMEN

A high proton-conducting phase appears in the composites of zirconium- and titanium-oxide nanoparticles and polyphosphoric acid (HPO(3)). Metal oxide nanoparticles (ZrO(2) and TiO(2)) react with HPO(3) and form composite electrolytes containing pyrophosphates (ZrP(2)O(7) or TiP(2)O(7)) and shortened HPO(3) chains. The ZrO(2)-HPO(3) composite exhibits eleven times higher conductivity than sole HPO(3) at the maximum. A formed layer of shortened HPO(3) chains surrounding the pyrophosphates enhances the proton conductivities of the composite electrolytes and reduces the activation energies for the proton conductivities from 50 to 30 kJ mol(-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA