Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Biometals ; 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874822

Candida species undeniably rank as the most prevalent opportunistic human fungal pathogens worldwide, with Candida albicans as the predominant representative. However, the emergence of non-albicans Candida species (NACs) has marked a significant shift, accompanied by rising incidence rates and concerning trends of antifungal resistance. The search for new strategies to combat antifungal-resistant Candida strains is of paramount importance. Recently, our research group reported the anti-Candida activity of a coordination compound containing copper(II) complexed with theophylline (theo) and 1,10-phenanthroline (phen), known as "CTP" - Cu(theo)2phen(H2O).5H2O. In the present work, we investigated the mechanisms of action of CTP against six medically relevant, antifungal-resistant NACs, including C. auris, C. glabrata, C. haemulonii, C. krusei, C. parapsilosis and C. tropicalis. CTP demonstrated significant efficacy in inhibiting mitochondrial dehydrogenases, leading to heightened intracellular reactive oxygen species production. CTP treatment resulted in substantial damage to the plasma membrane, as evidenced by the passive incorporation of propidium iodide, and induced DNA fragmentation as revealed by the TUNEL assay. Scanning electron microscopy images of post-CTP treatment NACs further illustrated profound alterations in the fungal surface morphology, including invaginations, cavitations and lysis. These surface modifications significantly impacted the ability of Candida cells to adhere to a polystyrene surface and to form robust biofilm structures. Moreover, CTP was effective in disassembling mature biofilms formed by these NACs. In conclusion, CTP represents a promising avenue for the development of novel antifungals with innovative mechanisms of action against clinically relevant NACs that are resistant to antifungals commonly used in clinical settings.

2.
Acta Crystallogr C Struct Chem ; 80(Pt 4): 129-142, 2024 04 01.
Article En | MEDLINE | ID: mdl-38577890

This report presents a comprehensive investigation into the synthesis and characterization of Schiff base compounds derived from benzenesulfonamide. The synthesis process, involved the reaction between N-cycloamino-2-sulfanilamide and various substituted o-salicylaldehydes, resulted in a set of compounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized compounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substantiated by molecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The exploration of frontier molecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyrrolidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 20, emerged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piperidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed remarkeable inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluorouracil. The exploration of molecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of molecules.


Colonic Neoplasms , Schiff Bases , Humans , Schiff Bases/chemistry , Models, Molecular , Molecular Conformation , Crystallography, X-Ray , Spectroscopy, Fourier Transform Infrared , Hydrogen Bonding , Phenols
3.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38192072

We synthesized and characterized two copper(II) complexes: [CuL2Cl]Cl and [CuL'2Cl]Cl, where L = 2,2'-bipyridine and L' = 4,4'-dimethyl-2,2'-bipyridine. We evaluated their photocatalytic hydrocarboxylation properties on a series of synthesized Schiff bases (SBs): (E)-1-(4-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone (SB1), (E)-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (SB2), (E)-4-Bromo-2-((thiazol-2-ylimino)methyl)phenol (SB3), and (E)-4-((5-bromo-2-hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (SB4). Under mild photocatalytic reaction conditions (room temperature, 1 atm CO2, 30-watt Blue LED light), the derivatives of α-amino acids UAA1-4 were obtained with yields ranging from 5% to 44%. Experimental results demonstrated that [CuL2Cl]Cl exhibited superior photocatalytic efficiency compared to [CuL'2Cl]Cl, attributed to favourable electronic properties. In silico studies revealed strong binding strengths with E. faecalis DHFR (4M7U) for docked Schiff bases (SB) and unnatural α-amino acids (UAAs). In vitro studies further demonstrated significant antimicrobial and antifungal activity for SB2, SB3, and SB4, while none of the synthesized UAAs exhibited such properties, primarily due to the electronic and binding properties of these molecules.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; 42(3): 1110-1125, 2024.
Article En | MEDLINE | ID: mdl-37029762

The rationale at the basis of targeted approach in oncology is radically shifting-from development of highly specific agents aiming at a single target towards molecules interfering with multiple targets. This study was performed to isolate and characterize bioactive molecules from Olax subscorpioidea stem and investigate their potentials as multi-targeted inhibitors against selected non-small cell lung cancer, breast cancer and chronic myelogenous leukemia oncogenic targets. Three compounds: ß-sitosterol (1), α-amyrin (2) and stigmasterol (3) were isolated. The structures of 1 - 3 were elucidated by analysis of their spectroscopic data (NMR, MS and IR). To the best of our knowledge, this is the first time these compounds were isolated from O. subscorpioidea stems. Furthermore, integrated analysis of MS/MS data using the Global Natural Products Social Molecular Networking (GNPS) workflow enabled dereplication and identification of 26 compounds, including alkaloids (remerine, boldine), terpenoids (3-hydroxy-11-ursen-28,13-olide, oleanolic acid), flavonoids (kaempferitrin, olax chalcone A) and saponins in O. subscorpioidea stem. Molecular docking studies revealed that some of the compounds, including olax chalcone A (-9.2 to -10.9 kcal/mol), 3-Hydroxy-11-ursen-28,13-olide (-6.6 to -10.2 kcal/mol), α-amyrin (-6.6 to -10.2 kcal/mol), stigmasterol (-7.7 to -10.1 kcal/mol), ß-Sitosterol (-7 to -9.9 kcal/mol) and kaempferitrin (-7.7 to -9 kcal/mol) possessed good inhibitory potentials against selected cancer targets, when compared with reference inhibitors (-8.4 to -13.7 kcal/mol). A few of these compounds were shown to have considerable to favorable pharmacokinetic and drug-likeness properties. This study provides some rationale for the use of O. subscorpioidea in ethnomedicinal management of cancer and identifies some potential anticancer agents.Communicated by Ramaswamy H. Sarma.


Carcinoma, Non-Small-Cell Lung , Chalcone , Chalcones , Lung Neoplasms , Pentacyclic Triterpenes , Humans , Molecular Docking Simulation , Stigmasterol , Tandem Mass Spectrometry , Molecular Dynamics Simulation
5.
Biometals ; 37(2): 321-336, 2024 Apr.
Article En | MEDLINE | ID: mdl-37917351

Candida spp. are the commonest fungal pathogens worldwide. Antifungal resistance is a problem that has prompted the discovery of novel anti-Candida drugs. Herein, 25 compounds, some of them containing copper(II), cobalt(II) and manganese(II) ions, were initially evaluated for inhibiting the growth of reference strains of Candida albicans and Candida tropicalis. Eight (32%) of the compounds inhibited the proliferation of these yeasts, displaying minimum inhibitory concentrations (MICs) ranging from 31.25 to 250 µg/mL and minimum fungicidal concentration (MFCs) from 62.5 to 250 µg/mL. Drug-likeness/pharmacokinetic calculated by SwissADME indicated that the 8 selected compounds were suitable for use as topical drugs. The complex CTP, Cu(theo)2phen(H2O).5H2O (theo = theophylline; phen = 1,10-phenanthroline), was chosen for further testing against 10 medically relevant Candida species that were resistant to fluconazole/amphotericin B. CTP demonstrated a broad spectrum of action, inhibiting the growth of all 20 clinical fungal isolates, with MICs from 7.81 to 62.5 µg/mL and MFCs from 15.62 to 62.5 µg/mL. Conversely, CTP did not cause lysis in erythrocytes. The toxicity of CTP was evaluated in vivo using Galleria mellonella and Tenebrio molitor. CTP had no or low levels of toxicity at doses ranging from 31.25 to 250 µg/mL for 5 days. After 24 h of treatment, G. mellonella larvae exhibited high survival rates even when exposed to high doses of CTP (600 µg/mL), with the 50% cytotoxic concentration calculated as 776.2 µg/mL, generating selectivity indexes varying from 12.4 to 99.4 depending on each Candida species. These findings suggest that CTP could serve as a potential drug to treat infections caused by Candida species resistant to clinically available antifungals.


Antifungal Agents , Candida , Phenanthrolines , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Copper/pharmacology , Theophylline/pharmacology , Candida albicans , Drug Resistance, Fungal , Microbial Sensitivity Tests
6.
Acta Crystallogr C Struct Chem ; 78(Pt 12): 730-742, 2022 12 01.
Article En | MEDLINE | ID: mdl-36468556

In the search for new `sulfa drugs' with therapeutic properties, o-nitrosulfonamides and N-cycloamino-o-sulfanilamides were synthesized and characterized using techniques including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction (SC-XRD). The calculated density functional theory (DFT)-optimized geometry of the molecules showed similar conformations to those obtained by SC-XRD. Molecular docking of N-piperidinyl-o-sulfanilamide and N-indolinyl-o-sulfanilamide supports the notion that o-sulfanilamides are able to bind to human carbonic anhydrase II and IX inhibitors (hCA II and IX; PDB entries 4iwz and 5fl4). Hirshfeld surface analyses and DFT studies of three o-nitrosulfonamides {1-[(2-nitrophenyl)sulfonyl]pyrrolidine, C10H12N2O4S, 1, 1-[(2-nitrophenyl)sulfonyl]piperidine, C11H14N2O4S, 2, and 1-[(2-nitrophenyl)sulfonyl]-2,3-dihydro-1H-indole, C14H12N2O4S, 3} and three N-cycloamino-o-sulfanilamides [2-(pyrrolidine-1-sulfonyl)aniline, C10H14N2O2S, 4, 2-(piperidine-1-sulfonyl)aniline, C11H16N2O2S, 5, and 2-(2,3-dihydro-1H-indole-1-sulfonyl)aniline, C14H14N2O2S, 6] suggested that forces such as hydrogen bonding and π-π interactions hold molecules together and further showed that charge transfer could promote bioactivity and the ability to form biological interactions at the piperidinyl and phenyl moieties.


Aniline Compounds , Carbonic Anhydrase II , Humans , Sulfanilamide , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Crystallography, X-Ray , Hydrogen Bonding , Piperidines , Pyrrolidines
7.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 09.
Article En | MEDLINE | ID: mdl-36297352

Here, we report the Cu(II)-photocatalysed hydrocarboxylation of imines (C=N) from a series of synthesized Schiff Base derivatives, namely (E)-1-(4-((4-methylbenzylidene)amino)phenyl)ethanone, (E)-1-(3-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone, (E)-4-((5-bromo-2-hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, and (E)-1,5-dimethyl-4-((4-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one, with carbon dioxide (CO2) to generate disubstituted amino acids. Under mild conditions (atmospheric pressure of CO2, room temperature, and 30 W Blue LED light), good to excellent yields confirming the formation of substituted amino acid unsaturated acid derivatives were obtained. Single crystal X-ray diffraction (SC-XRD) and UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS) confirmed the square pyramidal geometry of the Cu(II) photocatalyst. Docking and DFT calculations of the substituted amino acid unsaturated acid derivatives showed their potential as antimicrobial molecules.

8.
Front Chem ; 10: 807225, 2022.
Article En | MEDLINE | ID: mdl-35936099

Reliance on crude oil remains high while the transition to green and renewable sources of fuel is still slow. Developing and strengthening strategies for reducing sulfur emissions from crude oil is therefore imperative and makes it possible to sustainably meet stringent regulatory sulfur level legislations in end-user liquid fuels (mostly less than 10 ppm). The burden of achieving these ultra-low sulfur levels has been passed to fuel refiners who are battling to achieve ultra-deep desulfurization through conventional hydroprocessing technologies. Removal of refractory sulfur-containing compounds has been cited as the main challenge due to several limitations with the current hydroprocessing catalysts. The inhibitory effects of nitrogen-containing compounds (especially the basic ones) is one of the major concerns. Several advances have been made to develop better strategies for achieving ultra-deep desulfurization and these include: improving hydroprocessing infrastructure, improving hydroprocessing catalysts, having additional steps for removing refractory sulfur-containing compounds and improving the quality of feedstocks. Herein, we provide perspectives that emphasize the importance of further developing hydroprocessing catalysts and pre-treating feedstocks to remove nitrogen-containing compounds prior to hydroprocessing as promising strategies for sustainably achieving ultra-deep hydroprocessing.

9.
Sci Rep ; 11(1): 16454, 2021 08 12.
Article En | MEDLINE | ID: mdl-34385495

Adsorption of problematic copper ions as one of the endocrine disruptive substances from aqueous solution onto nanoscale zerovalent iron (nZVI) was studied. The high pore size 186.9268 Å, pore diameter 240.753 Å, and BET surface area 20.8643 m2 g-1 and pH(pzc) enlisted nZVI as an efficient nano-adsorbent for treatment of heavy metals from synthetic wastewater. SEM and EDX revealed the morphology and elemental distribution before and after adsorption. 98.31% removal efficiency was achieved at optimum adsorption operational parameters. Of all the thirteen isotherm models, equilibrium data were well fitted to Langmuir. Kinetics and mechanism data across the concentrations from 10 to 200 mg L-1 were analyzed by ten models. PSO best described kinetics data as confirmed by various statistical error validity models. The intraparticle diffusion model described that the intraparticle diffusion was not the only rate-limiting step. The adsorption mechanism was diffusion governed established by Bangham and Boyd models. Feasible, spontaneous, endothermic, and degree of randomness were reveal by the thermodynamic studies. Better desorption index and efficiency were obtained using HCl suggesting multiple mechanism processes. The performance of ZVI suggested it has a great potential for effective removal of endocrine disruptive cationic contaminant from wastewater.

10.
J Fluoresc ; 31(4): 1177-1190, 2021 Jul.
Article En | MEDLINE | ID: mdl-34032972

A luminescent Cobalt(II) co-crystal [Co13(PDC)16(H2O)24.7H2O] 1 (where H2PDC = 2,6-pyridinedicarboxylic acid) have been prepared by oven-heating and slow evaporation of solvent. Single crystal X-ray diffraction (SCXRD) analysis revealed that 1 is a mixture of complexes that crystallizes in the triclinic space group P-1 and the geometry around the Co(II) ions is octahedral. The structure is extensively imbued with hydrogen bonding that helps in stabilizing the complex. Thermogravimetric analysis indicates that 1 is thermally stable up to 364 οC. The luminescence properties of 1 revealed a strong emission centered at 437 nm (λex = 345 nm) assigned to ligand to metal charge transfer (LMCT). The luminescence sensing of 1 towards volatile organic molecules were also examined. However, 1 displayed a turn off towards methanol compared to other molecules with high quenching efficiency and low limit of detection (3.5 × 10-4 vol%). The results show excellent selectively and high sensitivity. Powder X-ray diffraction studies revealed that the structural integrity of the complex was maintained after exposure to methanol vapour. Theoretical studies also revealed small binding energy (-413.2 au) and low energy gap (1.19) for 1-CH3OH adduct.

11.
Acta Crystallogr C Struct Chem ; 76(Pt 8): 810-820, 2020 08 01.
Article En | MEDLINE | ID: mdl-32756044

The title compound, 10-iodo-1,2-dihydroisoquinolino[2,1-b][1,2,4]benzothiadiazine 12,12-dioxide, C15H11IN2O2S (8), was synthesized via the metal-free intramolecular N-iodosuccinimide (NIS)-mediated radical oxidative sp3-C-H aminative cyclization of 2-(2'-aminobenzenesulfonyl)-1,3,4-trihydroisoquinoline, C15H16N2O2S (7). The amino adduct 7 was prepared via a two-step reaction, starting from the condensation of 2-nitrobenzenesulfonyl chloride (4) with 1,2,3,4-tetrahydroisoquinoline (5), to afford 2-(2'-nitrobenzenesulfonyl)-1,3,4-trihydroisoquinoline, C15H14N2O4S (6), in 82% yield. The catalytic hydrogenation of 6 with hydrogen gas, in the presence of 10% palladium-on-charcoal catalyst, furnished 7. Products 6-8 were characterized by their melting points, IR and NMR (1H and 13C) spectroscopy, and single-crystal X-ray diffraction. The three compounds crystallized in the monoclinic space group, with 7 exhibiting classical intramolecular hydrogen bonds of 2.16 and 2.26 Å. All three crystal structures exhibit centrosymmetric pairs of intermolecular C-H...π(ring) and/or π-π stacking interactions. The docking studies of molecules 6, 7 and 8 with deoxyribonucleic acid (PDB id: 1ZEW) revealed minor-groove binding behaviours without intercalation, with 7 presenting the most favourable global energy of the three molecules. Nonetheless, molecule 8 interacted strongly with the DNA macromolecule, with an attractive van der Waals energy of -15.53 kcal mol-1.

12.
Dalton Trans ; 48(44): 16687-16704, 2019 Nov 12.
Article En | MEDLINE | ID: mdl-31670339

A series of 5-coordinate oxidovanadium(iv) complexes based on 2-(2'-hydroxyphenyl)imidazole (HPIMH), with substituent groups of different electronegativities on the phenolic para position (HPIMX; X = -H, -Br, -OMe and -NO2), were synthesized and characterized. Three of these complexes were characterized by single crystal X-ray diffraction, [VIVO(PIMH)2], [VIVO(PIMBr)2] and [VIVO(PIMNO2)2], as well as a dioxidovanadium(v) compound ([VVO2(PIMH)(PIMH2)]). The complexes were tested for their catalytic activities in the oxidation of dibenzothiophene (DBT), the major refractory organosulfur compound found in fuel. The nitro substituted compound [VIVO(PIMNO2)2] had the highest catalytic oxidation activity followed by: [VIVO(PIMH)2] > [VIVO(PIMBr)2] > [VIVO(PIMMeO)2]. The decrease in activity is attributed to the different electronegativities of the substituent groups, which influence the electron density on the metal center, the V[double bond, length as m-dash]O bond distances and infrared stretching bands. Geometry index (τ) values calculated from single crystal X-ray diffraction (SC-XRD) data and DFT studies provided further insights on the trend in activity observed. SC-XRD, EPR, 51V NMR and UV-Vis spectroscopies, and DFT studies were instrumental in studying the mechanism of the catalyzed reaction and proposal of intermediate species. Both radical and non-radical pathways are plausible for the catalytic oxidation and participation of reactive oxygen species in both pathways is also postulated.

13.
Talanta ; 126: 61-72, 2014 Aug.
Article En | MEDLINE | ID: mdl-24881535

Molecularly imprinted polybenzimidazole nanofibers fabricated for the adsorption of oxidized organosulfur compounds are presented. The imprinted polymers exhibited better selectivity for their target model sulfone-containing compounds with adsorption capacities of 28.5±0.4mg g(-1), 29.8±2.2mg g(-1) and 20.1±1.4mg g(-1) observed for benzothiophene sulfone (BTO2), dibenzothiophene sulfone (DBTO2) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) respectively. Molecular modeling based upon the density functional theory (DFT) indicated that hydrogen bond interactions may take place between sulfone oxygen groups with NH groups of the PBI. Further DFT also confirmed the feasibility of π-π interactions between the benzimidazole rings and the aromatic sulfone compounds. The adsorption mode followed the Freundlich (multi-layered) adsorption isotherm which indicated possible sulfone-sulfone interactions. A home-made pressurized hot water extraction (PHWE) system was employed for the extraction/desorption of sulfone compounds within imprinted nanofibers at 1mL min(-1), 150°C and 30 bar. PHWE used a green solvent (water) and achieved better extraction yields compared to the Soxhlet extraction process. The application of molecularly imprinted polybenzimidazole (PBI) nanofibers displayed excellent sulfur removal, with sulfur in fuel after adsorption falling below the determined limit of detection (LOD), which is 2.4mg L(-1)S, and with a sulfur adsorption capacity of 5.3±0.4mg g(-1) observed for application in the fuel matrix.

14.
Dalton Trans ; 41(45): 13908-18, 2012 Dec 07.
Article En | MEDLINE | ID: mdl-23023479

The reaction between [V(IV)OSO(4)] and the tetradentate N(2)O(2)-donor Schiff base ligand, N,N-bis(o-hydroxybenzaldehyde)phenylenediamine (sal-HBPD), obtained by the condensation of salicylaldehyde and o-phenylenediamine in a molar ratio of 2 : 1 respectively, resulted in the formation of [V(IV)O(sal-HBPD)]. The molecular structure of [V(IV)O(sal-HBPD)] was determined by single crystal X-ray diffraction, and confirmed the distorted square pyramidal geometry of the complex with the N(2)O(2) binding mode of the tetradentate ligand. The formation of the polymer-supported p[V(IV)O(sal-AHBPD)] proceeded via the nitrosation of sal-HBPD, followed by the reduction with hydrogen to form an amine group that was then linked to Merrifield beads followed by the reaction with [V(IV)OSO(4)]. XPS and EPR were used to confirm the presence of oxovanadium(IV) within the beads. The BET surface area and porosity of the heterogeneous catalyst p[V(IV)O(sal-AHBPD)] were found to be 6.9 m(2) g(-1) and 180.8 Å respectively. Microanalysis, TG, UV-Vis and FT-IR were used for further characterization of both [V(IV)O(sal-HBPD)] and p[V(IV)O(sal-AHBPD)]. Oxidation of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was investigated using [V(IV)O(sal-HBPD)] and p[V(IV)O(sal-AHBPD)] as catalysts. Progress for oxidation of these model compounds was monitored with a gas chromatograph fitted with a flame ionization detector. The oxidation products were characterized using gas chromatography-mass spectrometry, microanalysis and NMR. Dibenzothiophene sulfone (DBTO(2)) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO(2)) were found to be the main products of oxidation. Oxovanadium(IV) Schiff base microspherical beads, p[V(IV)O(sal-AHBPD)], were able to catalyse the oxidation of sulfur in dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) to a tune of 88.0% and 71.8% respectively after 3 h at 40 °C. These oxidation results show promise for potential application of this catalyst in the oxidative desulfurization of crude oils.


Thiophenes/chemistry , Vanadates/chemistry , Catalysis , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Oxidation-Reduction
...