Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Nat Commun ; 15(1): 1368, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38365905

Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gαs activation. Chronic treatment of mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first two weeks, but not the third week of postnatal development, increased the density and strength of excitatory synapses. The effect of fluoxetine on PFC synaptic alterations in vivo was abolished by 5-HT2A and 5-HT7 receptor antagonists. Our data describe a molecular basis of 5-HT-dependent excitatory synaptic plasticity at the level of single spines in the PFC during early postnatal development.


Fluoxetine , Serotonin , Mice , Animals , Serotonin/pharmacology , Fluoxetine/pharmacology , Pyramidal Cells/physiology , Prefrontal Cortex/physiology , Synapses/physiology
2.
Mol Psychiatry ; 28(8): 3397-3413, 2023 Aug.
Article En | MEDLINE | ID: mdl-37433966

Thousands of people suffer from nausea with pregnancy each year. Nausea can be alleviated with cannabidiol (CBD), a primary component of cannabis that is widely available. However, it is unknown how fetal CBD exposure affects embryonic development and postnatal outcomes. CBD binds and activates receptors that are expressed in the fetal brain and are important for brain development, including serotonin receptors (5HT1A), voltage-gated potassium (Kv)7 receptors, and the transient potential vanilloid 1 receptor (TRPV1). Excessive activation of each of these receptors can disrupt neurodevelopment. Here, we test the hypothesis that fetal CBD exposure in mice alters offspring neurodevelopment and postnatal behavior. We administered 50 mg/kg CBD in sunflower oil or sunflower oil alone to pregnant mice from embryonic day 5 through birth. We show that fetal CBD exposure sensitizes adult male offspring to thermal pain through TRPV1. We show that fetal CBD exposure decreases problem-solving behaviors in female CBD-exposed offspring. We demonstrate that fetal CBD exposure increases the minimum current required to elicit action potentials and decreases the number of action potentials in female offspring layer 2/3 prefrontal cortex (PFC) pyramidal neurons. Fetal CBD exposure reduces the amplitude of glutamate uncaging-evoked excitatory post-synaptic currents, consistent with CBD-exposed female problem-solving behavior deficits. Combined, these data show that fetal CBD exposure disrupts neurodevelopment and postnatal behavior in a sex specific manner.


Cannabidiol , Humans , Pregnancy , Male , Female , Mice , Animals , Cannabidiol/pharmacology , Cannabidiol/metabolism , Sunflower Oil/metabolism , Prefrontal Cortex/metabolism , Pain/metabolism , Nausea/metabolism
3.
Neuron ; 111(3): 362-371.e6, 2023 02 01.
Article En | MEDLINE | ID: mdl-36395772

Dendritic spines can be directly connected to both inhibitory and excitatory presynaptic terminals, resulting in nanometer-scale proximity of opposing synaptic functions. While dually innervated spines (DiSs) are observed throughout the central nervous system, their developmental timeline and functional properties remain uncharacterized. Here we used a combination of serial section electron microscopy, live imaging, and local synapse activity manipulations to investigate DiS development and function in rodent hippocampus. Dual innervation occurred early in development, even on spines where the excitatory input was locally silenced. Synaptic NMDA receptor currents were selectively reduced at DiSs through tonic GABAB receptor signaling. Accordingly, spine enlargement normally associated with long-term potentiation on singly innervated spines (SiSs) was blocked at DiSs. Silencing somatostatin interneurons or pharmacologically blocking GABABRs restored NMDA receptor function and structural plasticity to levels comparable to neighboring SiSs. Thus, hippocampal DiSs are stable structures where function and plasticity are potently regulated by nanometer-scale GABAergic signaling.


Dendritic Spines , Receptors, N-Methyl-D-Aspartate , Dendritic Spines/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Synapses/physiology , gamma-Aminobutyric Acid , Neuronal Plasticity/physiology
4.
Bioessays ; 44(11): e2200134, 2022 11.
Article En | MEDLINE | ID: mdl-36089658

Bidirectional trans-synaptic signaling is essential for the formation, maturation, and plasticity of synaptic connections. Synaptic cell adhesion molecules (CAMs) are prime drivers in shaping the identities of trans-synaptic signaling pathways. A series of recent studies provide evidence that diverse presynaptic cell adhesion proteins dictate the regulation of specific synaptic properties in postsynaptic neurons. Focusing on mammalian synaptic CAMs, this article outlines several exemplary cases supporting this notion and highlights how these trans-synaptic signaling pathways collectively contribute to the specificity and diversity of neural circuit architecture.


Neurons , Synapses , Animals , Synapses/metabolism , Neurons/metabolism , Cell Adhesion Molecules/metabolism , Cell Communication , Mammals/metabolism
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article En | MEDLINE | ID: mdl-35074912

Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.


Amyloid beta-Protein Precursor/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Neural Cell Adhesion Molecules/genetics , Neural Inhibition , Synapses/metabolism , Amyloid beta-Protein Precursor/genetics , CA1 Region, Hippocampal , Carrier Proteins , Dendrites/metabolism , GABAergic Neurons/metabolism , Interneurons , Models, Biological , Neural Cell Adhesion Molecules/chemistry , Neural Cell Adhesion Molecules/metabolism , Neural Inhibition/genetics , Protein Binding , Protein Interaction Domains and Motifs , Pyramidal Cells/metabolism , Receptors, GABA-B/metabolism , Synaptic Transmission
6.
STAR Protoc ; 2(4): 100996, 2021 12 17.
Article En | MEDLINE | ID: mdl-34950882

Shrinkage and loss of dendritic spines are vital components of the neuronal plasticity that supports learning. To investigate the mechanisms of spine shrinkage and loss, Oh and colleagues established a two-photon glutamate uncaging protocol that reliably induces input-specific spine shrinkage on dendrites of rodent hippocampal CA1 pyramidal neurons. Here, we provide a detailed description of that protocol and also an optimized version that can be used to induce input- and synapse-specific shrinkage of dendritic spines at physiological Ca2+ levels. For complete details on the use and execution of this protocol, please refer to Oh et al. (2013), Stein et al. (2015), Stein et al. (2020), and Stein et al. (2021).


CA1 Region, Hippocampal/metabolism , Glutamic Acid/metabolism , Pyramidal Cells/metabolism , Animals , CA1 Region, Hippocampal/cytology , Dendritic Spines/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Photons , Rats , Rats, Sprague-Dawley
7.
Cell Rep ; 35(5): 109074, 2021 05 04.
Article En | MEDLINE | ID: mdl-33951422

Stress adversely affects an array of cognitive functions. Although stress-related disorders are often addressed in adulthood, far less is known about how early-life stress (ELS) affects the developing brain in early postnatal periods. Here we show that ELS, induced by maternal separation, leads to synaptic alteration of layer 2/3 pyramidal neurons in the prefrontal cortex (PFC) of mice. We find that layer 2/3 neurons show increased excitatory synapse numbers following ELS and that this is accompanied by hyperexcitability of PFC-projecting dopamine (DA) neurons in the ventral tegmental area. Notably, excitatory synaptic change requires local signaling through DA D2 receptors. In vivo pharmacological treatment with a D2 receptor agonist in the PFC of control mice mimics the effects of ELS on synaptic alterations. Our findings reveal a neuromodulatory mechanism underlying ELS-induced PFC dysfunction, and this mechanism may facilitate a more comprehensive understanding of how ELS leads to mental disorders.


Dopamine/metabolism , Prefrontal Cortex/physiology , Animals , Male , Mice
8.
Cell ; 184(10): 2779-2792.e18, 2021 05 13.
Article En | MEDLINE | ID: mdl-33915107

Ligands can induce G protein-coupled receptors (GPCRs) to adopt a myriad of conformations, many of which play critical roles in determining the activation of specific signaling cascades associated with distinct functional and behavioral consequences. For example, the 5-hydroxytryptamine 2A receptor (5-HT2AR) is the target of classic hallucinogens, atypical antipsychotics, and psychoplastogens. However, currently available methods are inadequate for directly assessing 5-HT2AR conformation both in vitro and in vivo. Here, we developed psychLight, a genetically encoded fluorescent sensor based on the 5-HT2AR structure. PsychLight detects behaviorally relevant serotonin release and correctly predicts the hallucinogenic behavioral effects of structurally similar 5-HT2AR ligands. We further used psychLight to identify a non-hallucinogenic psychedelic analog, which produced rapid-onset and long-lasting antidepressant-like effects after a single administration. The advent of psychLight will enable in vivo detection of serotonin dynamics, early identification of designer drugs of abuse, and the development of 5-HT2AR-dependent non-hallucinogenic therapeutics.


Biosensing Techniques , Designer Drugs/chemistry , Designer Drugs/pharmacology , Drug Discovery/methods , Hallucinogens/chemistry , Hallucinogens/pharmacology , Receptor, Serotonin, 5-HT2A/chemistry , Animals , Drug Evaluation, Preclinical/methods , Female , Fluorescence , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Photometry , Protein Conformation , Protein Engineering , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
9.
eNeuro ; 7(6)2020.
Article En | MEDLINE | ID: mdl-33109633

Precise information on synapse organization in a dendrite is crucial to understanding the mechanisms underlying voltage integration and the variability in the strength of synaptic inputs across dendrites of different complex morphologies. Here, we used focused ion beam/scanning electron microscope (FIB/SEM) to image the dendritic spines of mice in the hippocampal CA1 region, CA3 region, somatosensory cortex, striatum, and cerebellum (CB). Our results show that the spine geometry and dimensions differ across neuronal cell types. Despite this difference, dendritic spines were organized in an orchestrated manner such that the postsynaptic density (PSD) area per unit length of dendrite scaled positively with the dendritic diameter in CA1 proximal stratum radiatum (PSR), cortex, and CB. The ratio of the PSD area to neck length was kept relatively uniform across dendrites of different diameters in CA1 PSR. Computer simulation suggests that a similar level of synaptic strength across different dendrites in CA1 PSR enables the effective transfer of synaptic inputs from the dendrites toward soma. Excitatory postsynaptic potentials (EPSPs), evoked at single spines by glutamate uncaging and recorded at the soma, show that the neck length is more influential than head width in regulating the EPSP magnitude at the soma. Our study describes thorough morphologic features and the organizational principles of dendritic spines in different brain regions.


Dendrites , Synapses , Animals , Computer Simulation , Excitatory Postsynaptic Potentials , Mice , Neurons
11.
Nat Commun ; 10(1): 211, 2019 01 14.
Article En | MEDLINE | ID: mdl-30643148

Ras and Rho small GTPases are critical for numerous cellular processes including cell division, migration, and intercellular communication. Despite extensive efforts to visualize the spatiotemporal activity of these proteins, achieving the sensitivity and dynamic range necessary for in vivo application has been challenging. Here, we present highly sensitive intensiometric small GTPase biosensors visualizing the activity of multiple small GTPases in single cells in vivo. Red-shifted sensors combined with blue light-controllable optogenetic modules achieved simultaneous monitoring and manipulation of protein activities in a highly spatiotemporal manner. Our biosensors revealed spatial dynamics of Cdc42 and Ras activities upon structural plasticity of single dendritic spines, as well as a broad range of subcellular Ras activities in the brains of freely behaving mice. Thus, these intensiometric small GTPase sensors enable the spatiotemporal dissection of complex protein signaling networks in live animals.


Biosensing Techniques/methods , Monomeric GTP-Binding Proteins/analysis , Optogenetics/methods , Signal Transduction , Single-Cell Analysis/methods , Animals , Biosensing Techniques/instrumentation , Dendritic Spines/metabolism , Embryo, Mammalian , Female , HeLa Cells , Hippocampus/cytology , Humans , Intravital Microscopy/instrumentation , Intravital Microscopy/methods , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Monomeric GTP-Binding Proteins/metabolism , Optogenetics/instrumentation , Organ Culture Techniques , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Single-Cell Analysis/instrumentation , Stereotaxic Techniques , Time-Lapse Imaging
12.
Brain Res ; 1707: 18-26, 2019 03 15.
Article En | MEDLINE | ID: mdl-30439352

In the brain, dendrites of pyramidal neurons contain intermingled excitatory and inhibitory synapses. Synaptic connections dynamically change during development and throughout our lifetime, yet the brain can properly maintain an optimal ratio of synaptic excitation to inhibition. Despite recent advances in our understanding of the formation and refinement of excitatory glutamatergic synapses, little is known about signals that regulate inhibitory GABAergic synapse development. In this review, we discuss previous and recent insights in the cellular and molecular mechanisms that underlie GABAergic synapse formation and plasticity, with a specific focus on the key roles of synaptic activity and postsynaptic membrane molecules.


GABAergic Neurons/metabolism , Pyramidal Cells/physiology , Synapses/physiology , Animals , Brain/metabolism , GABAergic Neurons/physiology , Humans , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Pyramidal Cells/metabolism , Synapses/metabolism , Synaptic Transmission/physiology
13.
Elife ; 72018 02 08.
Article En | MEDLINE | ID: mdl-29419376

Stress can be a motivational force for decisive action and adapting to novel environment; whereas, exposure to chronic stress contributes to the development of depression and anxiety. However, the molecular mechanisms underlying stress-responsive behaviors are not fully understood. Here, we identified the orphan receptor GPR158 as a novel regulator operating in the prefrontal cortex (PFC) that links chronic stress to depression. GPR158 is highly upregulated in the PFC of human subjects with major depressive disorder. Exposure of mice to chronic stress also increased GPR158 protein levels in the PFC in a glucocorticoid-dependent manner. Viral overexpression of GPR158 in the PFC induced depressive-like behaviors. In contrast GPR158 ablation, led to a prominent antidepressant-like phenotype and stress resiliency. We found that GPR158 exerts its effects via modulating synaptic strength altering AMPA receptor activity. Taken together, our findings identify a new player in mood regulation and introduce a pharmacological target for managing depression.


Depression/physiopathology , Gene Expression Regulation , Prefrontal Cortex/physiology , Receptors, G-Protein-Coupled/metabolism , Stress, Psychological , Animals , Humans , Mice
14.
Nat Methods ; 14(5): 495-503, 2017 May.
Article En | MEDLINE | ID: mdl-28369042

Few tools exist to visualize and manipulate neurons that are targets of neuromodulators. We present iTango, a light- and ligand-gated gene expression system based on a light-inducible split tobacco etch virus protease. Cells expressing the iTango system exhibit increased expression of a marker gene in the presence of dopamine and blue-light exposure, both in vitro and in vivo. We demonstrated the iTango system in a behaviorally relevant context, by inducing expression of optogenetic tools in neurons under dopaminergic control during a behavior of interest. We thereby gained optogenetic control of these behaviorally relevant neurons. We applied the iTango system to decipher the roles of two classes of dopaminergic neurons in the mouse nucleus accumbens in a sensitized locomotor response to cocaine. Thus, the iTango platform allows for control of neuromodulatory circuits in a genetically and functionally defined manner with spatial and temporal precision.


Brain/metabolism , Dopamine/metabolism , Gene Expression , Light , Neural Pathways/physiology , Optogenetics/methods , Animals , Behavior, Animal/physiology , Brain/cytology , Brain Mapping/methods , Dopamine/pharmacology , Endopeptidases/genetics , Gene Expression/drug effects , Gene Expression/radiation effects , HEK293 Cells , Humans , Ligands , Mice , Neurons/metabolism , Photic Stimulation , Rats , Receptors, Dopamine D2/genetics , Signal-To-Noise Ratio
15.
Neuron ; 94(2): 304-311.e4, 2017 Apr 19.
Article En | MEDLINE | ID: mdl-28426965

Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release.


Calcium/metabolism , Dendrites/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Synapses/metabolism , Animals , Dendritic Spines/metabolism , Mice , Signal Transduction/physiology , Synapses/physiology
16.
Science ; 353(6303): 1037-1040, 2016 09 02.
Article En | MEDLINE | ID: mdl-27516412

Dendrites of cortical pyramidal neurons contain intermingled excitatory and inhibitory synapses. We studied the local mechanisms that regulate the formation and distribution of synapses. We found that local γ-aminobutyric acid (GABA) release on dendrites of mouse cortical layer 2/3 pyramidal neurons could induce gephyrin puncta and dendritic spine formation via GABA type A receptor activation and voltage-gated calcium channels during early postnatal development. Furthermore, the newly formed inhibitory and excitatory synaptic structures rapidly gained functions. Bidirectional manipulation of GABA release from somatostatin-positive interneurons increased and decreased the number of gephyrin puncta and dendritic spines, respectively. These results highlight a noncanonical function of GABA as a local synaptogenic element shaping the early establishment of neuronal circuitry in mouse cortex.


Cerebral Cortex/growth & development , Neurogenesis , Pyramidal Cells/physiology , Synapses/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Carrier Proteins/metabolism , Cerebral Cortex/cytology , Dendrites/physiology , Dendritic Spines/physiology , Female , Interneurons/metabolism , Interneurons/physiology , Male , Membrane Proteins/metabolism , Mice , Pyramidal Cells/metabolism , Receptors, GABA-A/metabolism
17.
Article En | MEDLINE | ID: mdl-27445785

The complex information-processing capabilities of the central nervous system emerge from intricate patterns of synaptic input-output relationships among various neuronal circuit components. Understanding these capabilities thus requires a precise description of the individual synapses that comprise neural networks. Recent advances in fluorescent protein engineering, along with developments in light-favoring tissue clearing and optical imaging techniques, have rendered light microscopy (LM) a potent candidate for large-scale analyses of synapses, their properties, and their connectivity. Optically imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or microstructures enables the efficient, fine-resolution illumination of synaptic anatomy and function in large neural circuits. Here we review the latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity. We also identify associated technologies in gene delivery, tissue processing, and computational image analysis that will play a crucial role in bridging the gap between synapse- and system-level neuroscience.

18.
Proc Natl Acad Sci U S A ; 113(10): E1372-81, 2016 Mar 08.
Article En | MEDLINE | ID: mdl-26903616

During cortical circuit development in the mammalian brain, groups of excitatory neurons that receive similar sensory information form microcircuits. However, cellular mechanisms underlying cortical microcircuit development remain poorly understood. Here we implemented combined two-photon imaging and photolysis in vivo to monitor and manipulate neuronal activities to study the processes underlying activity-dependent circuit changes. We found that repeated triggering of spike trains in a randomly chosen group of layer 2/3 pyramidal neurons in the somatosensory cortex triggered long-term plasticity of circuits (LTPc), resulting in the increased probability that the selected neurons would fire when action potentials of individual neurons in the group were evoked. Significant firing pattern changes were observed more frequently in the selected group of neurons than in neighboring control neurons, and the induction was dependent on the time interval between spikes, N-methyl-D-aspartate (NMDA) receptor activation, and Calcium/calmodulin-dependent protein kinase II (CaMKII) activation. In addition, LTPc was associated with an increase of activity from a portion of neighboring neurons with different probabilities. Thus, our results demonstrate that the formation of functional microcircuits requires broad network changes and that its directionality is nonrandom, which may be a general feature of cortical circuit assembly in the mammalian cortex.


Action Potentials/physiology , Nerve Net/physiology , Pyramidal Cells/physiology , Somatosensory Cortex/physiology , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Long-Term Potentiation/physiology , Mice, Inbred C57BL , Microscopy, Confocal , Models, Neurological , Neuronal Plasticity/physiology , Patch-Clamp Techniques , Pyramidal Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Somatosensory Cortex/cytology , Somatosensory Cortex/metabolism
19.
Neuron ; 89(4): 756-69, 2016 02 17.
Article En | MEDLINE | ID: mdl-26853302

Older concepts of a hard-wired adult brain have been overturned in recent years by in vivo imaging studies revealing synaptic remodeling, now thought to mediate rearrangements in microcircuit connectivity. Using three-color labeling and spectrally resolved two-photon microscopy, we monitor in parallel the daily structural dynamics (assembly or removal) of excitatory and inhibitory postsynaptic sites on the same neurons in mouse visual cortex in vivo. We find that dynamic inhibitory synapses often disappear and reappear again in the same location. The starkest contrast between excitatory and inhibitory synapse dynamics is on dually innervated spines, where inhibitory synapses frequently recur while excitatory synapses are stable. Monocular deprivation, a model of sensory input-dependent plasticity, shortens inhibitory synapse lifetimes and lengthens intervals to recurrence, resulting in a new dynamic state with reduced inhibitory synaptic presence. Reversible structural dynamics indicate a fundamentally new role for inhibitory synaptic remodeling--flexible, input-specific modulation of stable excitatory connections.


Neural Inhibition/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/ultrastructure , Synapses/physiology , Synaptic Transmission/physiology , Visual Cortex/cytology , Animals , Carrier Proteins/metabolism , Disks Large Homolog 4 Protein , Female , Functional Laterality , Guanylate Kinases/genetics , Guanylate Kinases/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition/genetics , Organ Culture Techniques , Pregnancy , Sensory Deprivation , Synapses/ultrastructure , gamma-Aminobutyric Acid/pharmacology
20.
Cell Rep ; 10(2): 162-9, 2015 Jan 13.
Article En | MEDLINE | ID: mdl-25558061

Competition between synapses contributes to activity-dependent refinement of the nervous system during development. Does local competition between neighboring synapses drive circuit remodeling during experience-dependent plasticity in the cerebral cortex? Here, we examined the role of activity-mediated competitive interactions in regulating dendritic spine structure and function on hippocampal CA1 neurons. We found that high-frequency glutamatergic stimulation at individual spines, which leads to input-specific synaptic potentiation, induces shrinkage and weakening of nearby unstimulated synapses. This heterosynaptic plasticity requires potentiation of multiple neighboring spines, suggesting that a local threshold of neural activity exists beyond which inactive synapses are punished. Notably, inhibition of calcineurin, IP3Rs, or group I metabotropic glutamate receptors (mGluRs) blocked heterosynaptic shrinkage without blocking structural potentiation, and inhibition of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) blocked structural potentiation without blocking heterosynaptic shrinkage. Our results support a model in which activity-induced shrinkage signal, and not competition for limited structural resources, drives heterosynaptic structural and functional depression during neural circuit refinement.


CA1 Region, Hippocampal/physiology , Dendrites/physiology , Synapses/physiology , Animals , Calcineurin/chemistry , Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Neuronal Plasticity , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/metabolism
...