Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
J Neurogenet ; 37(1-2): 70-77, 2023.
Article En | MEDLINE | ID: mdl-37267057

Animals increase their locomotion activity and reduce sleep duration under starved conditions. This suggests that sleep and metabolic status are closely interconnected. The nutrient and hunger sensors in the Drosophila brain, including diuretic hormone 44 (DH44)-, CN-, and cupcake-expressing neurons, detect circulating glucose levels in the internal milieu, regulate the insulin and glucagon secretion and promote food consumption. Food deprivation is known to reduce sleep duration, but a potential role mediated by the nutrient and hunger sensors in regulating sleep and locomotion activity remains unclear. Here, we show that DH44 neurons are involved in regulating starvation-induced sleep suppression, but CN neurons or cupcake neurons may not be involved in regulating starvation-induced sleep suppression or baseline sleep patterns. Inactivation of DH44 neurons resulted in normal daily sleep durations and patterns under fed conditions, whereas it ablated sleep reduction under starved conditions. Inactivation of CN neurons or cupcake neurons, which were proposed to be nutrient and hunger sensors in the fly brain, did not affect sleep patterns under both fed and starved conditions. We propose that the glucose-sensing DH44 neurons play an important role in mediating starvation-induced sleep reduction.


Drosophila Proteins , Starvation , Animals , Drosophila/physiology , Drosophila melanogaster/physiology , Drosophila Proteins/metabolism , Sleep/physiology , Starvation/metabolism , Brain/metabolism , Glucose/metabolism , Nutrients
2.
BMB Rep ; 56(4): 209-215, 2023 Apr.
Article En | MEDLINE | ID: mdl-36977606

Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrientsensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems. [BMB Reports 2023; 56(4): 209-215].


Drosophila Proteins , Neuropeptides , Animals , Drosophila/metabolism , Drosophila Proteins/metabolism , Diuretics , Neuropeptides/metabolism , Hormones , Mammals/metabolism
3.
J Neurogenet ; 37(1-2): 3-9, 2023.
Article En | MEDLINE | ID: mdl-36165786

Neurogenetic research using the Drosophila model has immensely expanded around the world. Likewise, scientists in South Korea have leveraged the advantages of Drosophila genetic tools to understand various neurobiological processes. In this special issue, we will overview the history of Drosophila neurogenetic research in South Korea that led to significant discoveries and notably implications. We will describe how Drosophila system was first introduced to elevate neural developmental studies in 1990s. Establishing Drosophila-related resources has been a key venture, which led to the generation of over 100,000 mutant lines and the launch of the K-Gut initiative with Korea Drosophila Research Center (KDRC). These resources have supported the pioneer studies in modeling human disease and understanding genes and neural circuits that regulate animal behavior and physiology.


Drosophila , Neurosciences , Animals , Humans , Behavior, Animal/physiology , Drosophila/genetics , Neurogenesis , Republic of Korea
4.
Nature ; 593(7860): 570-574, 2021 05.
Article En | MEDLINE | ID: mdl-33953396

A balanced intake of macronutrients-protein, carbohydrate and fat-is essential for the well-being of organisms. An adequate calorific intake but with insufficient protein consumption can lead to several ailments, including kwashiorkor1. Taste receptors (T1R1-T1R3)2 can detect amino acids in the environment, and cellular sensors (Gcn2 and Tor)3 monitor the levels of amino acids in the cell. When deprived of dietary protein, animals select a food source that contains a greater proportion of protein or essential amino acids (EAAs)4. This suggests that food selection is geared towards achieving the target amount of a particular macronutrient with assistance of the EAA-specific hunger-driven response, which is poorly understood. Here we show in Drosophila that a microbiome-gut-brain axis detects a deficit of EAAs and stimulates a compensatory appetite for EAAs. We found that the neuropeptide CNMamide (CNMa)5 was highly induced in enterocytes of the anterior midgut during protein deprivation. Silencing of the CNMa-CNMa receptor axis blocked the EAA-specific hunger-driven response in deprived flies. Furthermore, gnotobiotic flies bearing an EAA-producing symbiotic microbiome exhibited a reduced appetite for EAAs. By contrast, gnotobiotic flies with a mutant microbiome that did not produce leucine or other EAAs showed higher expression of CNMa and a greater compensatory appetite for EAAs. We propose that gut enterocytes sense the levels of diet- and microbiome-derived EAAs and communicate the EAA-deprived condition to the brain through CNMa.


Amino Acids, Essential/administration & dosage , Brain-Gut Axis , Drosophila/physiology , Food Preferences , Gastrointestinal Microbiome , Amino Acids, Essential/deficiency , Animal Nutritional Physiological Phenomena , Animals , Animals, Genetically Modified , Appetite , Enterocytes , Female , Germ-Free Life , Hunger , Leucine , Symbiosis
5.
Neuron ; 109(12): 1979-1995.e6, 2021 06 16.
Article En | MEDLINE | ID: mdl-34015253

Nutrient sensors allow animals to identify foods rich in specific nutrients. The Drosophila nutrient sensor, diuretic hormone 44 (DH44) neurons, helps the fly to detect nutritive sugar. This sensor becomes operational during starvation; however, the mechanisms by which DH44 neurons or other nutrient sensors are regulated remain unclear. Here, we identified two satiety signals that inhibit DH44 neurons: (1) Piezo-mediated stomach/crop stretch after food ingestion and (2) Neuromedin/Hugin neurosecretory neurons in the ventral nerve cord (VNC) activated by an increase in the internal glucose level. A subset of Piezo+ neurons that express DH44 neuropeptide project to the crop. We found that DH44 neuronal activity and food intake were stimulated following a knockdown of piezo in DH44 neurons or silencing of Hugin neurons in the VNC, even in fed flies. Together, we propose that these two qualitatively distinct peripheral signals work in concert to regulate the DH44 nutrient sensor during the fed state.


Drosophila Proteins/metabolism , Gastrointestinal Tract/physiology , Glucose/metabolism , Ion Channels/metabolism , Neural Inhibition/physiology , Neurons/metabolism , Neuropeptides/metabolism , Satiety Response/physiology , Animals , Drosophila , Drosophila melanogaster , Feeding Behavior/physiology , Gastrointestinal Tract/innervation , Insect Hormones , Mechanotransduction, Cellular/physiology , Neurons/physiology , Stomach/innervation , Stomach/physiology
6.
Elife ; 102021 02 18.
Article En | MEDLINE | ID: mdl-33599608

Across animal species, meals are terminated after ingestion of large food volumes, yet underlying mechanosensory receptors have so far remained elusive. Here, we identify an essential role for Drosophila Piezo in volume-based control of meal size. We discover a rare population of fly neurons that express Piezo, innervate the anterior gut and crop (a food reservoir organ), and respond to tissue distension in a Piezo-dependent manner. Activating Piezo neurons decreases appetite, while Piezo knockout and Piezo neuron silencing cause gut bloating and increase both food consumption and body weight. These studies reveal that disrupting gut distension receptors changes feeding patterns and identify a key role for Drosophila Piezo in internal organ mechanosensation.


Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Ion Channels/genetics , Mechanotransduction, Cellular/genetics , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Feeding Behavior/physiology , Female , Gastrointestinal Tract/physiology , Ion Channels/metabolism , Male , Sensory Receptor Cells/physiology
7.
Nature ; 574(7779): 559-564, 2019 10.
Article En | MEDLINE | ID: mdl-31645735

Although glucose-sensing neurons were identified more than 50 years ago, the physiological role of glucose sensing in metazoans remains unclear. Here we identify a pair of glucose-sensing neurons with bifurcated axons in the brain of Drosophila. One axon branch projects to insulin-producing cells to trigger the release of Drosophila insulin-like peptide 2 (dilp2) and the other extends to adipokinetic hormone (AKH)-producing cells to inhibit secretion of AKH, the fly analogue of glucagon. These axonal branches undergo synaptic remodelling in response to changes in their internal energy status. Silencing of these glucose-sensing neurons largely disabled the response of insulin-producing cells to glucose and dilp2 secretion, disinhibited AKH secretion in corpora cardiaca and caused hyperglycaemia, a hallmark feature of diabetes mellitus. We propose that these glucose-sensing neurons maintain glucose homeostasis by promoting the secretion of dilp2 and suppressing the release of AKH when haemolymph glucose levels are high.


Brain/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Glucagon/metabolism , Glucose/metabolism , Insulin/metabolism , Neurons/metabolism , Animals , Axons/metabolism , Brain/anatomy & histology , Drosophila Proteins/metabolism , Drosophila melanogaster/anatomy & histology , Glucose/analysis , Insect Hormones/metabolism , Male , Neural Inhibition , Neural Pathways , Neuropeptides/chemistry , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism
8.
Proc Natl Acad Sci U S A ; 115(12): E2829-E2838, 2018 03 20.
Article En | MEDLINE | ID: mdl-29507251

Sweet-insensitive Drosophila mutants are unable to readily identify sugar. In presence of wild-type (WT) flies, however, these mutant flies demonstrated a marked increase in their preference for nutritive sugar. Real-time recordings of starved WT flies revealed that these flies discharge a drop from their gut end after consuming nutritive sugars, but not nonnutritive sugars. We proposed that the drop may contain a molecule(s) named calorie-induced secreted factor (CIF), which serves as a signal to inform other flies about its nutritional value. Consistent with this, we observed a robust preference of flies for nutritive sugar containing CIF over nutritive sugar without CIF. Feeding appears to be a prerequisite for the release of CIF, given that fed flies did not produce it. Additionally, correlation analyses and pharmacological approaches suggest that the nutritional value, rather than the taste, of the consumed sugar correlates strongly with the amount (or intensity) of the released CIF. We observed that the release of this attractant signal requires the consumption of macronutrients, specifically nutritive sugars and l-enantiomer essential amino acids (l-eAAs), but it is negligibly released when flies are fed nonnutritive sugars, unnatural d-enantiomer essential amino acids (d-eAAs), fatty acids, alcohol, or salts. Finally, CIF (i) is not detected by the olfactory system, (ii) is not influenced by the sex of the fly, and (iii) is not limited to one species of Drosophila.


Drosophila/physiology , Pheromones/metabolism , Sugars , Animal Communication , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Male , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nutritive Value , Olfactory Bulb/physiology , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Species Specificity , Sugars/metabolism , Sugars/pharmacology
9.
Sci Rep ; 7(1): 11368, 2017 09 12.
Article En | MEDLINE | ID: mdl-28900300

Kohlschutter-Tönz syndrome (KTS) is a rare genetic disorder with neurological dysfunctions including seizure and intellectual impairment. Mutations at the Rogdi locus have been linked to development of KTS, yet the underlying mechanisms remain elusive. Here we demonstrate that a Drosophila homolog of Rogdi acts as a novel sleep-promoting factor by supporting a specific subset of gamma-aminobutyric acid (GABA) transmission. Rogdi mutant flies displayed insomnia-like behaviors accompanied by sleep fragmentation and delay in sleep initiation. The sleep suppression phenotypes were rescued by sustaining GABAergic transmission primarily via metabotropic GABA receptors or by blocking wake-promoting dopaminergic pathways. Transgenic rescue further mapped GABAergic neurons as a cell-autonomous locus important for Rogdi-dependent sleep, implying metabotropic GABA transmission upstream of the dopaminergic inhibition of sleep. Consistently, an agonist specific to metabotropic but not ionotropic GABA receptors titrated the wake-promoting effects of dopaminergic neuron excitation. Taken together, these data provide the first genetic evidence that implicates Rogdi in sleep regulation via GABAergic control of dopaminergic signaling. Given the strong relevance of GABA to epilepsy, we propose that similar mechanisms might underlie the neural pathogenesis of Rogdi-associated KTS.


Dopamine/metabolism , Drosophila/physiology , Nuclear Proteins/genetics , Signal Transduction , Sleep/genetics , Wakefulness/genetics , gamma-Aminobutyric Acid/metabolism , Alleles , Animals , Animals, Genetically Modified , Anticonvulsants/pharmacology , Brain/drug effects , Brain/metabolism , Circadian Rhythm/genetics , Female , GABAergic Neurons/metabolism , Loss of Function Mutation , Models, Biological , Mutation , Nuclear Proteins/metabolism , Receptors, GABA/metabolism , Signal Transduction/drug effects
10.
Sci Rep ; 5: 17893, 2015 Dec 09.
Article En | MEDLINE | ID: mdl-26647714

Mammalian T-type Ca(2+) channels are encoded by three separate genes (Cav3.1, 3.2, 3.3). These channels are reported to be sleep stabilizers important in the generation of the delta rhythms of deep sleep, but controversy remains. The identification of precise physiological functions for the T-type channels has been hindered, at least in part, by the potential for compensation between the products of these three genes and a lack of specific pharmacological inhibitors. Invertebrates have only one T-type channel gene, but its functions are even less well-studied. We cloned Ca-α1T, the only Cav3 channel gene in Drosophila melanogaster, expressed it in Xenopus oocytes and HEK-293 cells, and confirmed it passes typical T-type currents. Voltage-clamp analysis revealed the biophysical properties of Ca-α1T show mixed similarity, sometimes falling closer to Cav3.1, sometimes to Cav3.2, and sometimes to Cav3.3. We found Ca-α1T is broadly expressed across the adult fly brain in a pattern vaguely reminiscent of mammalian T-type channels. In addition, flies lacking Ca-α1T show an abnormal increase in sleep duration most pronounced during subjective day under continuous dark conditions despite normal oscillations of the circadian clock. Thus, our study suggests invertebrate T-type Ca(2+) channels promote wakefulness rather than stabilizing sleep.


Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Drosophila/physiology , Sleep/physiology , Animals , Brain/physiology , Circadian Rhythm/genetics , Gene Knockdown Techniques , HEK293 Cells , Homeostasis , Humans , Membrane Potentials , Mutation , Oocytes/metabolism , Patch-Clamp Techniques , Rats , Xenopus
11.
PLoS Biol ; 12(10): e1001974, 2014 Oct.
Article En | MEDLINE | ID: mdl-25333796

Sleep, a reversible quiescent state found in both invertebrate and vertebrate animals, disconnects animals from their environment and is highly regulated for coordination with wakeful activities, such as reproduction. The fruit fly, Drosophila melanogaster, has proven to be a valuable model for studying the regulation of sleep by circadian clock and homeostatic mechanisms. Here, we demonstrate that the sex peptide receptor (SPR) of Drosophila, known for its role in female reproduction, is also important in stabilizing sleep in both males and females. Mutants lacking either the SPR or its central ligand, myoinhibitory peptide (MIP), fall asleep normally, but have difficulty in maintaining a sleep-like state. Our analyses have mapped the SPR sleep function to pigment dispersing factor (pdf) neurons, an arousal center in the insect brain. MIP downregulates intracellular cAMP levels in pdf neurons through the SPR. MIP is released centrally before and during night-time sleep, when the sleep drive is elevated. Sleep deprivation during the night facilitates MIP secretion from specific brain neurons innervating pdf neurons. Moreover, flies lacking either SPR or MIP cannot recover sleep after the night-time sleep deprivation. These results delineate a central neuropeptide circuit that stabilizes the sleep state by feeding a slow-acting inhibitory input into the arousal system and plays an important role in sleep homeostasis.


Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Peptides/metabolism , Sleep/physiology , Animals , Brain/metabolism , Cyclic AMP/metabolism , Down-Regulation , Drosophila Proteins/genetics , Female , Gene Knockdown Techniques , Homeostasis , Male , Neurons/metabolism , Peptides/genetics , Receptors, Peptide
12.
Mol Cells ; 37(4): 295-301, 2014 Apr.
Article En | MEDLINE | ID: mdl-24658384

SIFamide receptor (SIFR) is a Drosophila G protein-coupled receptor for the neuropeptide SIFamide (SIFa). Although the sequence and spatial expression of SIFa are evolutionarily conserved among insect species, the physiological function of SIFa/SIFR signaling remains elusive. Here, we provide genetic evidence that SIFa and SIFR promote sleep in Drosophila. Either genetic ablation of SIFa-expressing neurons in the pars intercerebralis (PI) or pan-neuronal depletion of SIFa expression shortened baseline sleep and reduced sleep-bout length, suggesting that it caused sleep fragmentation. Consistently, RNA interference- mediated knockdown of SIFR expression caused short sleep phenotypes as observed in SIFa-ablated or depleted flies. Using a panel of neuron-specific Gal4 drivers, we further mapped SIFR effects to subsets of PI neurons. Taken together, these results reveal a novel physiological role of the neuropeptide SIFa/SIFR pathway to regulate sleep through sleep-promoting neural circuits in the PI of adult fly brains.


Drosophila Proteins/metabolism , Drosophila , Neurons/physiology , Neuropeptides/metabolism , Pituitary Gland, Intermediate/pathology , Receptors, Neuropeptide/metabolism , Sleep Deprivation/metabolism , Sleep , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Female , Male , RNA, Small Interfering/genetics , Receptors, Neuropeptide/genetics , Signal Transduction/genetics , Sleep/genetics , Sleep Deprivation/genetics , Transcription Factors/genetics
13.
PLoS One ; 8(7): e68269, 2013.
Article En | MEDLINE | ID: mdl-23844178

Histamine and its two receptors, histamine-gated chloride channel subunit 1 (HisCl1) and ora transientless (Ort), are known to control photoreception and temperature sensing in Drosophila. However, histamine signaling in the context of neural circuitry for sleep-wake behaviors has not yet been examined in detail. Here, we obtained mutant flies with compromised or enhanced histamine signaling and tested their baseline sleep. Hypomorphic mutations in histidine decarboxylase (HDC), an enzyme catalyzing the conversion from histidine to histamine, caused an increase in sleep duration. Interestingly, hisCl1 mutants but not ort mutants showed long-sleep phenotypes similar to those in hdc mutants. Increased sleep duration in hisCl1 mutants was rescued by overexpressing hisCl1 in circadian pacemaker neurons expressing a neuropeptide pigment dispersing factor (PDF). Consistently, RNA interference (RNAi)-mediated depletion of hisCl1 in PDF neurons was sufficient to mimic hisCl1 mutant phenotypes, suggesting that PDF neurons are crucial for sleep regulation by the histamine-HisCl1 signaling. Finally, either hisCl1 mutation or genetic ablation of PDF neurons dampened wake-promoting effects of elevated histamine signaling via direct histamine administration. Taken together, these data clearly demonstrate that the histamine-HisCl1 receptor axis can activate and maintain the wake state in Drosophila and that wake-activating signals may travel via the PDF neurons.


Chloride Channels/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Signal Transduction , Wakefulness/physiology , Animals , Dose-Response Relationship, Drug , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Histamine/metabolism , Histamine/pharmacology , Male , Mutation , Neurons/drug effects , Neurons/metabolism , Neuropeptides/metabolism , Phenotype , Signal Transduction/drug effects , Sleep/drug effects , Sleep/genetics , Wakefulness/drug effects
...