Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762409

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods.

2.
Small ; 11(16): 1905-11, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25580907

RESUMEN

Ag nanowire (NW) mesh is used as transparent conducting electrode for high efficient flexible organic solar cells (OSCs). The Ag NW mesh electrode facilitates light scattering and trapping, allowing enhancement of light absorption in the active layer. OSCs incorporating Ag NW mesh electrode exhibit maximum power conversion efficiency (PCE) of 4.47%, 25%, higher than that of OSCs with a conventional ITO electrode (3.63%).

3.
ACS Appl Mater Interfaces ; 5(10): 4113-9, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23586602

RESUMEN

Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 µΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 µm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 µΩ·cm at an energy level of 40.6 J cm(-2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA