Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 478(7): 1453-1470, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33749780

RESUMEN

Redox regulation of proteins via cysteine residue oxidation is involved in the control of various cellular signal pathways. Pyruvate kinase M2 (PKM2), a rate-limiting enzyme in glycolysis, is critical for the metabolic shift from glycolysis to the pentose phosphate pathway under oxidative stress in cancer cell growth. The PKM2 tetramer is required for optimal pyruvate kinase (PK) activity, whereas the inhibition of inter-subunit interaction of PKM2 induced by Cys358 oxidation has reduced PK activity. In the present study, we identified three oxidation-sensitive cysteine residues (Cys358, Cys423 and Cys424) responsible for four oxidation forms via the thiol oxidant diamide and/or hydrogen peroxide (H2O2). Possibly due to obstruction of the dimer-dimer interface, H2O2-induced sulfenylation (-SOH) and diamide-induced modification at Cys424 inhibited tetramer formation and PK activity. Cys423 is responsible for intermolecular disulfide bonds with heterologous proteins via diamide. Additionally, intramolecular polysulphide linkage (-Sn-, n ≧ 3) between Cys358 and an unidentified PKM2 Cys could be induced by diamide. We observed that cells expressing the oxidation-resistant PKM2 (PKM2C358,424A) produced more intracellular reactive oxygen species (ROS) and exhibited greater sensitivity to ROS-generating reagents and ROS-inducible anti-cancer drugs compared with cells expressing wild-type PKM2. These results highlight the possibility that PKM2 inhibition via Cys358 and Cys424 oxidation contributes to eliminating excess ROS and oxidative stress.


Asunto(s)
Proteínas Portadoras/química , Cisteína/química , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/patología , Proteínas de la Membrana/química , Estrés Oxidativo , Compuestos de Sulfhidrilo/química , Hormonas Tiroideas/química , Proteínas Portadoras/metabolismo , Glucólisis , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Células Tumorales Cultivadas , Proteínas de Unión a Hormona Tiroide
2.
PLoS One ; 13(6): e0198744, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29894505

RESUMEN

For maltose fermentation, budding yeast Saccharomyces cerevisiae operates a mechanism that involves transporters (MALT), maltases (MALS) and regulators (MALR) collectively known as MAL genes. However, functional relevance of MAL genes during sake brewing process remains largely elusive, since sake yeast is cultured under glucose-rich condition achieved by the co-culture partner Aspergillus spp.. Here we isolated an ethyl methane sulfonate (EMS)-mutagenized sake yeast strain exhibiting enhanced maltose fermentation compared to the parental strain. The mutant carried a single nucleotide insertion that leads to the extension of the C-terminal region of a previously uncharacterized MALR gene YPR196W-2, which was renamed as MAL73. Introduction of the mutant allele MAL73L with extended C-terminal region into the parental or other sake yeast strains enhanced the growth rate when fed with maltose as the sole carbon source. In contrast, disruption of endogenous MAL73 in the sake yeasts decreased the maltose fermentation ability of sake yeast, confirming that the original MAL73 functions as a MALR. Importantly, the MAL73L-expressing strain fermented more maltose in practical condition compared to the parental strain during sake brewing process. Our data show that MAL73(L) is a novel MALR gene that regulates maltose fermentation, and has been functionally attenuated in sake yeast by single nucleotide deletion during breeding history. Since the MAL73L-expressing strain showed enhanced ability of maltose fermentation, MAL73L might also be a valuable tool for enhancing maltose fermentation in yeast in general.


Asunto(s)
Bebidas Alcohólicas/microbiología , Fermentación , Maltosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Polimorfismo de Nucleótido Simple , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Simportadores/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo
3.
Biochim Biophys Acta ; 1821(9): 1295-305, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22659048

RESUMEN

Saccharomyces cerevisiae is able to use some fatty acids, such as oleic acid, as a sole source of carbon. ß-oxidation, which occurs in a single membrane-enveloped organelle or peroxisome, is responsible for the assimilation of fatty acids. In S. cerevisiae, ß-oxidation occurs only in peroxisomes, and H(2)O(2) is generated during this fatty acid-metabolizing pathway. S. cerevisiae has three GPX genes (GPX1, GPX2, and GPX3) encoding atypical 2-Cys peroxiredoxins. Here we show that expression of GPX1 was induced in medium containing oleic acid as a carbon source in an Msn2/Msn4-dependent manner. We found that Gpx1 was located in the peroxisomal matrix. The peroxisomal Gpx1 showed peroxidase activity using thioredoxin or glutathione as a reducing power. Peroxisome biogenesis was induced when cells were cultured with oleic acid. Peroxisome biogenesis was impaired in gpx1∆ cells, and subsequently, the growth of gpx1∆ cells was lowered in oleic acid-containing medium. Gpx1 contains six cysteine residues. Of the cysteine-substituted mutants of Gpx1, Gpx1(C36S) was not able to restore growth and peroxisome formation in oleic acid-containing medium, therefore, redox regulation of Gpx1 seems to be involved in the mechanism of peroxisome formation.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Ácido Oléico/farmacología , Peroxisomas/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Sustitución de Aminoácidos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Glutatión/genética , Glutatión/metabolismo , Glutatión Peroxidasa/genética , Mutación Missense , Ácido Oléico/química , Oxidación-Reducción/efectos de los fármacos , Peroxisomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Glutatión Peroxidasa GPX1
4.
Biochem Biophys Res Commun ; 411(3): 580-5, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21763276

RESUMEN

Gpx2, one of three glutathione peroxidase homologs (Gpx1, Gpx2, and Gpx3) in Saccharomyces cerevisiae, is an atypical 2-Cys peroxiredoxin that prefers to use thioredoxin as a reducing agent in vitro. Despite Gpx2 being an antioxidant, no obvious phenotype of gpx2Δ mutant cells in terms of oxidative stress has yet been found. To gain a clue as to Gpx2's physiological function in vivo, here we identify its intracellular distribution. Gpx2 was found to exist in the cytoplasm and mitochondria. In mitochondria, Gpx2 was associated with the outer membrane of the cytoplasmic-side, as well as the inner membrane of the matrix-side. The redox state of the mitochondrial Gpx2 was regulated by Trx1 and Trx2 (cytoplasmic thioredoxin), and by Trx3 (mitochondrial matrix thioredoxin). In addition, we found that the disruption of GPX2 reduced the sporulation efficiency of diploid cells.


Asunto(s)
Glutatión Peroxidasa/fisiología , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/fisiología , Citoplasma/enzimología , Glutatión Peroxidasa/metabolismo , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/enzimología , Tiorredoxinas/metabolismo
5.
FEMS Yeast Res ; 10(6): 787-90, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20572871

RESUMEN

The budding yeast Saccharomyces cerevisiae has three homologues of glutathione peroxidase (GPX1, GPX2, and GPX3). Two structural homologues of the mammalian glutathione peroxidase, Gpx2 and Gpx3, have been proven to be atypical 2-Cys peroxiredoxins, which prefer to use thioredoxin as an electron donor. Here, we show that Gpx1 is also an atypical 2-Cys peroxiredoxin, but uses glutathione and thioredoxin almost equally. We determined the redox state of Gpx1 in vivo.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Regulación Enzimológica de la Expresión Génica , Glutatión/metabolismo , Cinética , Oxidación-Reducción , Especificidad por Sustrato , Tiorredoxinas/metabolismo , Glutatión Peroxidasa GPX1
6.
Biochem J ; 427(2): 275-87, 2010 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-20121702

RESUMEN

Although methylglyoxal is derived from glycolysis, it has adverse effects on cellular function. Hence, the intrinsic role of methylglyoxal in vivo remains to be determined. Glyoxalase 1 is a pivotal enzyme in the metabolism of methylglyoxal in all types of organisms. To learn about the physiological roles of methylglyoxal, we have screened conditions that alter the expression of the gene encoding glyoxalase 1, GLO1, in Saccharomyces cerevisiae. We show that the expression of GLO1 is induced following treatment with Ca2+ and is dependent on the MAPK (mitogen-activated protein kinase) Hog1 protein and the Msn2/Msn4 transcription factors. Intriguingly, the Ca2+-induced expression of GLO1 was enhanced in the presence of FK506, a potent inhibitor of calcineurin. Consequently, the Ca2+-induced expression of GLO1 in a mutant that is defective in calcineurin or Crz1, the sole transcription factor downstream of calcineurin, was much greater than that in the wild-type strain even without FK506. This phenomenon was dependent upon a cis-element, the STRE (stress-response element), in the promoter that is able to mediate the response to Ca2+ signalling together with Hog1 and Msn2/Msn4. The level of Ca2+-induced expression of GLO1 reached a maximum in cells overexpressing MSN2 even when FK506 was not present, whereas in cells overexpressing CRZ1 the level was greatly reduced and increased markedly when FK506 was present. We also found that the levels of Msn2 and Msn4 proteins in Ca2+-treated cells decreased gradually and that FK506 blocked the degradation of Msn2/Msn4. We propose that Crz1 destabilizes Msn2/Msn4 in the nuclei of cells in response to Ca2+ signalling.


Asunto(s)
Calcineurina/fisiología , Señalización del Calcio , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/química , Factores de Transcripción/fisiología , Núcleo Celular , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Lactoilglutatión Liasa/genética , Estabilidad Proteica , Piruvaldehído , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
7.
Genes Cells ; 15(1): 59-75, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20002498

RESUMEN

Saccharomyces cerevisiae has three homologues of the glutathione peroxidase gene, GPX1, GPX2, and GPX3. We have previously reported that the expression of GPX3 was constitutive, but that of GPX2 was induced by oxidative stress and CaCl(2), and uncovered the regulatory mechanisms involved. Here, we show that the expression of GPX1 is induced by glucose starvation and treatment with CaCl(2). The induction of GPX1 expression in response to glucose starvation and Ca(2+) was dependent on the transcription factors Msn2 and Msn4 and cis-acting elements [stress response element (STRE)] in the GPX1 promoter. The Ras/cAMP pathway is also involved in the expression of GPX1. We found that Snf1, a Ser/Thr protein kinase, is involved in the glucose starvation- and Ca(2+)-induced expression of GPX1. The activation of Snf1 is accompanied by phosphorylation of Thr(210). We found that the Ca(2+)-treatment as well as glucose starvation causes the phosphorylation of Thr(210) of Snf1 in a Tos3, Sak1, and Elm1 protein kinase-dependent manner. As the timing of the initiation of Ca(2+)-induced expression of GPX1 was retarded in an snf1Delta mutant, the activation of Snf1 seems pivotal to the early-stage-response of GPX1 to Ca(2+).


Asunto(s)
Calcio/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/deficiencia , Glutatión Peroxidasa/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas ras/metabolismo , Señalización del Calcio/efectos de los fármacos , AMP Cíclico/metabolismo , Glucosa/farmacología , Glutatión Peroxidasa/metabolismo , Modelos Biológicos , Mutación/genética , Nitrógeno/deficiencia , Nitrógeno/farmacología , Elementos de Respuesta/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Glutatión Peroxidasa GPX1
8.
Appl Microbiol Biotechnol ; 75(6): 1393-9, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17390130

RESUMEN

Thioredoxin is crucial for the maintenance of the redox status of cells of all types. Mammalian thioredoxin is secreted from various types of cells, although the mechanism underlying has not yet been clarified. Previously, we demonstrated that thioredoxin was released from Saccharomyces cerevisiae after treatment with ethanol. In this paper, we show that as well as ethanol, low-pH shock and hypoosmotic shock release thioredoxin. Low-molecular-weight proteins in yeast cells were preferentially released by treatment with ethanol and low-pH shock. A cell wall integrity pathway seems partially involved in the hypoosmotic shock-induced release of thioredoxin. Considerable amounts of thioredoxin were present in the insoluble fractions of the cells, a portion of which was associated with lipid microdomains that are resistant to nonionic detergent at 4 degrees C. The intracellular localization of thioredoxin may influence the efficiency of its release from yeast cells with ethanol.


Asunto(s)
Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/metabolismo , Presión Osmótica , Solubilidad
9.
Appl Environ Microbiol ; 73(5): 1672-5, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17209065

RESUMEN

Thioredoxin, an antioxidant protein, is a promising molecule for development of functional foods because it protects the gastric mucosa and reduces the allergenicity of allergens. To establish a method for obtaining an ample amount of yeast thioredoxin, we found here that thioredoxin is released from Saccharomyces cerevisiae by treatment with 20% ethanol. We also found that Japanese sake contains a considerable amount of thioredoxin.


Asunto(s)
Etanol/farmacología , Microbiología Industrial/métodos , Saccharomyces cerevisiae/enzimología , Tiorredoxinas/aislamiento & purificación , Fermentación , Proteínas Fúngicas/análisis , Proteínas Fúngicas/aislamiento & purificación , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Tiorredoxinas/análisis , Vino/análisis
10.
Biochem Biophys Res Commun ; 352(3): 750-5, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17150183

RESUMEN

Since it seems quite difficult for frozen cells to repair the damage caused by freezing, the adequate responses appear to be induced during and/or after the thawing process to recover from the damage due to freezing. In this study, the cellular events happening upon the return from freezing at -30 degrees C to a growth temperature (28 degrees C) were investigated. Yap1p, an oxidative stress-responsive transcription factor, was not activated in the thawed cells, indicating that no serious oxidative stress was generated in the frozen-thawed cells. On the other hand, Msn2p and Msn4p, general stress-responsive transcription factors, were activated in the thawed cells and caused the increased expression of a number of Msn2p/Msn4p-target genes including SOD1, SOD2, and several HSP genes. Since almost no expression of Msn2p/Msn4p-target genes was induced before thawing, these results indicate that Msn2p and Msn4p play a role during the recovery process from freezing.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Congelación , Respuesta al Choque Térmico/fisiología , Estrés Oxidativo/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Adaptación Fisiológica/fisiología , Apoptosis/fisiología , Proliferación Celular , Supervivencia Celular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...