Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Dairy Sci ; 107(1): 220-241, 2024 Jan.
Article En | MEDLINE | ID: mdl-37690719

The objective of the present study was to investigate the effect of individual and combined use of dietary fat, nitrate, and 3-nitrooxypropanol (3-NOP) on dairy cows' enteric methane (CH4) emission and production performance. Twenty-four primiparous and 24 multiparous Danish Holstein cows (111 ± 44.6 d in milk; mean ± standard deviation) were included in an incomplete 8 × 8 Latin square design with six 21-d periods. Dietary treatments were organized in a 2 × 2 × 2 factorial arrangement aiming for 2 levels of FAT (30 or 63 g of crude fat/kg of dry matter [DM]; LF or HF, respectively), 2 levels of NITRATE (0 or 10 g of nitrate/kg of DM; UREA or NIT, respectively), and 2 levels of 3-NOP (0 or 80 mg/kg DM; BLANK or NOP, respectively). Treatments were included in ad libitum-fed partial mixed rations in bins that automatically measured feed intake and eating behavior. Additional concentrate was offered as bait in GreenFeed units used for measurement of gas emission. For total DM intake (DMI), a FAT × NITRATE interaction showed that DMI, across parities and levels of 3-NOP, was unaffected by separate fat supplementation, but reduced by nitrate with 4.6% and synergistically decreased (significant 2-way interaction) with 13.0% when fat and nitrate were combined. Additionally, 3-NOP decreased DMI by 13.4% and the combination of 3-NOP with fat and nitrate decreased DMI in an additive way (no significant 3-way interaction). The decreasing effects on DMI were more pronounced in multiparous cows than in primiparous cows. For treatments with largest reductions in DMI, eating behavior was altered toward more frequent, but smaller meals, a slower eating rate and increased attempts to visit unassigned feed bins. Energy-corrected milk (ECM) yield increased by 6.3% with fat supplementation, whereas ECM yield did not differ among diets including nitrate (FAT × NITRATE interaction). Cows supplemented with 3-NOP had 9.0% lower ECM yield than cows fed no 3-NOP. Based on three 2-way interactions including FAT, NITRATE, and 3-NOP, the combined use of the additives resulted in antagonistic effects on CH4 reduction. A 6% to 7% reduction in CH4 yield (CH4/kg of DMI) could be ascribed to the effect of fat, a 12% to 13% reduction could be ascribed to the effect of nitrate and an 18% to 23% reduction could be ascribed to the effect of 3-NOP. Hence, no combinations of additives resulted in CH4 yield-reductions that were greater than what was obtained by separate supplementation of the most potent additive within the combination. The CH4 yield reduction potential of additives was similar between parities. Increased apparent total-tract digestibility of organic matter (OM) in cows fed combinations including nitrate or 3-NOP was a result of a NITRATE × 3-NOP interaction. Apparent total-tract digestibility of OM was also increased by fat supplementation. These increases reflected observed decreases in DMI. In conclusion, combined use of fat, nitrate, and 3-NOP in all combinations did not result in CH4 reductions that were greater than separate supplementation of the most potent additive within the combination (3-NOP > nitrate > fat). Additionally, separate supplementation of some additives and combined use of all additives reduced DMI.


Milk , Nitrates , Propanols , Female , Cattle , Animals , Nitrates/pharmacology , Lactation , Dietary Fats/pharmacology , Methane , Diet/veterinary , Eating , Animal Feed/analysis , Rumen , Zea mays
2.
J Dairy Sci ; 107(4): 2047-2065, 2024 Apr.
Article En | MEDLINE | ID: mdl-37863291

Fat in the form of cracked rapeseed and 3-nitrooxypropanol (3-NOP, market as Bovaer) were fed alone or in combination to 4 Danish Holstein multicannulated dairy cows, with the objective to investigate effects on gas exchange, dry matter intake (DMI), nutrient digestion, and nutrient metabolism. The study design was a 4 × 4 Latin square with a 2 × 2 factorial treatment arrangement with 2 levels of fat supplementation; 33 g of crude fat per kg of dry matter (DM) or 64 g of crude fat per kg of DM for low and high fat diets, respectively, and 2 levels of 3-NOP; 0 mg/kg DM or 80 mg/kg DM. In total, 4 diets were formulated: low fat (LF), high fat (HF), 3-NOP and low fat (3LF), and 3-NOP and high fat (3HF). Cows were fed ad libitum and milked twice daily. The adaptation period lasted 11 d, followed by 5 d with 12 diurnal sampling times of digesta and ruminal fluid. Thereafter, gas exchange was measured for 5 d in respiration chambers. Chromic oxide and titanium dioxide were used as external flow markers to determine intestinal nutrient flow. No interactions between fat supplementation and 3-NOP were observed for methane yield (g/kg DM), total-tract digestibility of nutrients or total volatile fatty acid (VFA) concentration in the rumen. Methane yield (g/kg DMI) was decreased by 24% when cows were fed 3-NOP. In addition, 3-NOP increased carbon dioxide and hydrogen yield (g/kg DM) by 6% and 3,500%, respectively. However, carbon dioxide production was decreased when expressed on a daily basis. Fat supplementation did not affect methane yield but tended to reduce methane in percent of gross energy intake. A decrease (11%) in DMI was observed, when cows were fed 3-NOP. Likely, the lower DMI mediated a lower passage rate causing the tendency to higher rumen and total-tract neutral detergent fiber digestibility, when the cows were fed 3-NOP. Total VFA concentrations in the rumen were negatively affected both by 3-NOP and fat supplementation. Furthermore, 3-NOP caused a shift in the VFA fermentation profile, with decreased acetate proportion and increased butyrate proportion, whereas propionate proportion was unaffected. Increased concentrations of the alcohols methanol, ethanol, propanol, butanol, and 2-butanol were observed in the ruminal fluid when cows were fed 3-NOP. These changes in rumen metabolites indicate partial re-direction of hydrogen into other hydrogen sinks, when methanogenesis is inhibited by 3-NOP. In conclusion, fat supplementation did not reduce methane yield, whereas 3-NOP reduced methane yield, irrespective of fat level. However, the concentration of 3-NOP and diet composition and resulting desired mitigation effect must be considered before implementation. The observed reduction in DMI with 80 mg 3-NOP/kg DM was intriguing and may indicate that a lower dose should be applied in a Northern European context; however, the mechanism behind needs further investigation.


Brassica napus , Lactation , Female , Cattle , Animals , Brassica napus/metabolism , Digestion , Rumen/metabolism , Hydrogen/metabolism , Carbon Dioxide/metabolism , Dietary Fiber/metabolism , Milk/metabolism , Nutrients/metabolism , Diet/veterinary , Propanols/pharmacology , Fatty Acids, Volatile/metabolism , Fermentation , Methane/metabolism
3.
New Phytol ; 157(2): 263-270, 2003 Feb.
Article En | MEDLINE | ID: mdl-33873641

• Relationships between crop reflectance in the visible and the near infrared wavelengths are closely correlated with the amount of photosynthetically active tissue in the crop. Reflectance measurements were used to quantify genotypic differences in light interception, dry matter (DM) conversion efficiency and senescence pattern within the genus Miscanthus. The aim was to verify this method as a selection tool in plant breeding programmes. • Spectral reflectance of nine genotypes was measured weekly throughout their second and third growing seasons in a field experiment conducted in Denmark. Leaf greenness was assessed by visual scoring. • Significant differences between genotypes in the calculated fraction of PAR intercepted in green tissue (f ipar ) occurred mainly early and late in the growing season. The f ipar values correlated well with visual estimates of leaf greenness. Within genotypes accumulated intercepted PAR ranged from 632 to 737 MJ m -2 in the third year, while the DM : radiation quotient, ɛ, ranged from 1.06 to 2.53 g MJ -1 . • Yield variation between genotypes was mainly caused by differences in ɛ. Measuring spectral reflectance was less time consuming than visual leaf scoring. The significant physiological variation within the genus Miscanthus gives good prospects for future breeding.

...