Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(19): 10867-10876, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33051686

RESUMEN

The relationship between stochastic transcriptional bursts and dynamic 3D chromatin states is not well understood. Using an innovated, ultra-sensitive technique, we address here enigmatic features underlying the communications between MYC and its enhancers in relation to the transcriptional process. MYC thus interacts with its flanking enhancers in a mutually exclusive manner documenting that enhancer hubs impinging on MYC detected in large cell populations likely do not exist in single cells. Dynamic encounters with pathologically activated enhancers responsive to a range of environmental cues, involved <10% of active MYC alleles at any given time in colon cancer cells. Being the most central node of the chromatin network, MYC itself likely drives its communications with flanking enhancers, rather than vice versa. We submit that these features underlie an acquired ability of MYC to become dynamically activated in response to a diverse range of environmental cues encountered by the cell during the neoplastic process.


Asunto(s)
Carcinogénesis/genética , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Drosophila , Redes Reguladoras de Genes , Células HCT116 , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesos Estocásticos
3.
Nat Genet ; 51(12): 1723-1731, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31784729

RESUMEN

WNT signaling activates MYC expression in cancer cells. Here we report that this involves an oncogenic super-enhancer-mediated tethering of active MYC alleles to nuclear pores to increase transcript export rates. As the decay of MYC transcripts is more rapid in the nucleus than in the cytoplasm, the oncogenic super-enhancer-facilitated export of nuclear MYC transcripts expedites their escape from the nuclear degradation system in colon cancer cells. The net sum of this process, as supported by computer modeling, is greater cytoplasmic MYC messenger RNA levels in colon cancer cells than in wild type cells. The cancer-cell-specific gating of MYC is regulated by AHCTF1 (also known as ELYS), which connects nucleoporins to the oncogenic super-enhancer via ß-catenin. We conclude that WNT signaling collaborates with chromatin architecture to post-transcriptionally dysregulate the expression of a canonical cancer driver.


Asunto(s)
Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Genes myc , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Colon/citología , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/fisiología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARN , Factores de Transcripción/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-29904581

RESUMEN

Transcriptional enhancers constitute a subclass of regulatory elements that facilitate transcription. Such regions are generally organized by short stretches of DNA enriched in transcription factor-binding sites but also can include very large regions containing clusters of enhancers, termed super-enhancers. These regions increase the probability or the rate (or both) of transcription generally in cis and sometimes over very long distances by altering chromatin states and the activity of Pol II machinery at promoters. Although enhancers were discovered almost four decades ago, their inner workings remain enigmatic. One important opening into the underlying principle has been provided by observations that enhancers make physical contacts with their target promoters to facilitate the loading of the RNA polymerase complex. However, very little is known about how such chromatin loops are regulated and how they govern transcription in the three-dimensional context of the nuclear architecture. Here, we present current themes of how enhancers may boost gene expression in three dimensions and we identify currently unresolved key questions.

5.
Epigenetics ; 9(11): 1439-45, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25482057

RESUMEN

Despite considerable efforts, our understanding of the organization of higher order chromatin conformations in single cells and how these relate to chromatin marks remains poor. We have earlier invented the Chromatin In Situ Proximity (ChrISP) technique to determine proximities between chromatin fibers within a single chromosome. Here we used ChrISP to identify chromosome 11-specific hubs that are enriched in the H3K9me2 mark and that project toward the nuclear membrane in finger-like structures. Conversely, chromosome 11-specfic chromatin hubs, visualized by the presence of either H3K9me1 or H3K9me3 marks, are chromosome-wide and largely absent at the nuclear periphery. As the nuclear periphery-specific chromatin hubs were lost in the induced reduction of H3K9me2 levels, they likely represent Large Organization Chromatin in Lysine Methylation (LOCK) domains, previously identified by ChIP-seq analysis. Strikingly, the downregulation of the H3K9me2/3 marks also led to the chromosome-wide compaction of chromosome 11, suggesting a pleiotropic function of these features not recognized before. The ChrISP-mediated visualization of dynamic chromatin states in single cells thus provides an analysis of chromatin structures with a resolution far exceeding that of any other light microscopic technique.


Asunto(s)
Cromatina/metabolismo , Cromosomas Humanos Par 11/metabolismo , Técnicas Genéticas , Lisina/metabolismo , Sondas de ADN , Células HCT116 , Histonas/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Metilación , Microscopía Confocal , Análisis de la Célula Individual/métodos
6.
Biotechniques ; 56(3): 117-8, 120-4, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24641475

RESUMEN

Current techniques for analyzing chromatin structures are hampered by either poor resolution at the individual cell level or the need for a large number of cells to obtain higher resolution. This is a major problem as it hampers our understanding of chromatin conformation in single cells and how these respond to environmental cues. Here we describe a new method, chromatin in situ proximity (ChrISP), which reproducibly scores for proximities between two different chromatin fibers in 3-D with a resolution of ~170Å in single cells. The technique is based on the in situ proximity ligation assay (ISPLA), but ChrISP omits the rolling circle amplification step (RCA). Instead, the proximities between chromatin fibers are visualized by a fluorescent connector oligonucleotide DNA, here termed splinter, forming a circular DNA with another circle-forming oligonucleotide, here termed backbone, upon ligation. In contrast to the regular ISPLA technique, our modification enables detection of chromatin fiber proximities independent of steric hindrances from nuclear structures. We use this method to identify higher order structures of individual chromosomes in relation to structural hallmarks of interphase nuclei and beyond the resolution of the light microscope.


Asunto(s)
Cromatina/química , Microscopía/métodos , Hibridación de Ácido Nucleico/métodos , Cromosomas Humanos Par 11 , ADN Circular , Células HCT116 , Humanos , Hibridación Fluorescente in Situ/métodos , Conformación de Ácido Nucleico , Conformación Proteica , Sensibilidad y Especificidad , Análisis de la Célula Individual
7.
Epigenetics ; 7(4): 361-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22415163

RESUMEN

It is generally assumed that CTCF-binding sites are synonymous with the demarcation of expression domains by promoting the formation of chromatin loops. We have proposed earlier, however, that such features may be context-dependent. In support of this notion, we show here that chromatin loop structures, impinging on CTCF-binding sites 1/2 and 3/4 at the 5' and 3'-ends, respectively, within the maternal allele of the H19 imprinting control region (ICR), differ significantly. Although abrogation of CTCF binding to the maternal H19 ICR allele results in loss of chromatin loops in the 3'-region, there is a dramatic gain of long-range chromatin loops impinging on the 5'-region. As the degree of occupancy of its four CTCF-binding sites discriminates between the chromatin insulator and replication timing functions, we submit that the CTCF-binding sites within the H19 ICR are functionally diverse and organize context-dependent higher order chromatin conformations.


Asunto(s)
Cromatina/metabolismo , ARN no Traducido/metabolismo , Proteínas Represoras/metabolismo , Activación Transcripcional , Alelos , Animales , Sitios de Unión , Factor de Unión a CCCTC , Cromatina/genética , Inmunoprecipitación de Cromatina , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Cruzamientos Genéticos , Metilación de ADN , Replicación del ADN , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Transgénicos , Mapeo de Interacción de Proteínas , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/genética , Relación Estructura-Actividad , Factores de Tiempo
9.
J Biol Chem ; 285(26): 19727-37, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20427289

RESUMEN

Whether signal transduction pathways regulate epigenetic states in response to environmental cues remains poorly understood. We demonstrate here that Smad3, signaling downstream of transforming growth factor beta, interacts with the zinc finger domain of CCCTC-binding factor (CTCF), a nuclear protein known to act as "the master weaver of the genome." This interaction occurs via the Mad homology 1 domain of Smad3. Although Smad2 and Smad4 fail to interact, an alternatively spliced form of Smad2 lacking exon 3 interacts with CTCF. CTCF does not perturb well established transforming growth factor beta gene responses. However, Smads and CTCF co-localize to the H19 imprinting control region (ICR), which emerges as an insulator in cis and regulator of transcription and replication in trans via direct CTCF binding to the ICR. Smad recruitment to the ICR requires intact CTCF binding to this locus. Smad2/3 binding to the ICR requires Smad4, which potentially provides stability to the complex. Because the CTCF-Smad complex is not essential for the chromatin insulator function of the H19 ICR, we propose that it can play a role in chromatin cross-talk organized by the H19 ICR.


Asunto(s)
Cromatina/metabolismo , Proteínas Represoras/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Animales Recién Nacidos , Factor de Unión a CCCTC , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Femenino , Expresión Génica/efectos de los fármacos , Impresión Genómica/genética , Células Hep G2 , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Unión Proteica/efectos de los fármacos , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Smad/genética , Proteína smad3/genética , Proteína smad3/metabolismo , Transfección
10.
Epigenetics ; 5(4): 297-300, 2010 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-20421738

RESUMEN

Distant interactions among chromosomal loci are increasingly being seen as an important third dimension of genome biology. Thus, chromatin fibres can interact in cis and in trans to form chromatin loops and bridges, respectively. While it is generally assumed that regulatory elements from neighbouring domains or from other chromosomes interact in association to transcription or repression, this may be too simplistic. Here we propose that the evolution of genomic imprinting reflects the dissipation of epigenetic marks from a single locus, both in cis and trans, to recruit new imprinted domains. We also discuss the possibility that the genome is physically linked by means of maternal-specific epigenetic marks during development.


Asunto(s)
Cromosomas/genética , Epigénesis Genética , Genoma/genética , Animales , Sitios de Unión , Factor de Unión a CCCTC , Femenino , Impresión Genómica/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Represoras/metabolismo
11.
Chromosoma ; 119(4): 351-60, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20174815

RESUMEN

More than 10(9) base pairs of the genome in higher eucaryotes are positioned in the interphase nucleus such that gene activation, gene repression, remote gene regulation by enhancer elements, and reading as well as adjusting epigenetic marks are possible. One important structural and functional component of chromatin organization is the zinc finger factor CTCF. Two decades of research has advanced the understanding of the fundamental role that CTCF plays in regulating such a vast expanse of DNA.


Asunto(s)
Cromatina/fisiología , Nucleosomas/fisiología , Proteínas Represoras/fisiología , Animales , Sitios de Unión , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/fisiología , Núcleo Celular/fisiología , Cromatina/química , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/fisiología , Cromosomas/fisiología , Cromosomas Humanos/fisiología , Proteínas de Unión al ADN/fisiología , Elementos de Facilitación Genéticos , Impresión Genómica , Humanos , Inactivación del Cromosoma X , Dedos de Zinc/fisiología , Cohesinas
12.
Bioessays ; 32(1): 37-50, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20020479

RESUMEN

The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Humanos , Ratones , Modelos Biológicos , Modelos Genéticos , Nucleosomas/genética , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/química , Cohesinas
13.
Mol Cell Biol ; 30(5): 1199-216, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20038529

RESUMEN

Poly(ADP-ribosyl)ation of the conserved multifunctional transcription factor CTCF was previously identified as important to maintain CTCF insulator and chromatin barrier functions. However, the molecular mechanism of this regulation and also the necessity of this modification for other CTCF functions remain unknown. In this study, we identified potential sites of poly(ADP-ribosyl)ation within the N-terminal domain of CTCF and generated a mutant deficient in poly(ADP-ribosyl)ation. Using this CTCF mutant, we demonstrated the requirement of poly(ADP-ribosyl)ation for optimal CTCF function in transcriptional activation of the p19ARF promoter and inhibition of cell proliferation. By using a newly generated isogenic insulator reporter cell line, the CTCF insulator function at the mouse Igf2-H19 imprinting control region (ICR) was found to be compromised by the CTCF mutation. The association and simultaneous presence of PARP-1 and CTCF at the ICR, confirmed by single and serial chromatin immunoprecipitation assays, were found to be independent of CTCF poly(ADP-ribosyl)ation. These results suggest a model of CTCF regulation by poly(ADP-ribosyl)ation whereby CTCF and PARP-1 form functional complexes at sites along the DNA, producing a dynamic reversible modification of CTCF. By using bioinformatics tools, numerous sites of CTCF and PARP-1 colocalization were demonstrated, suggesting that such regulation of CTCF may take place at the genome level.


Asunto(s)
Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , Línea Celular , Proliferación Celular , Cartilla de ADN/genética , Impresión Genómica , Células HeLa , Humanos , Células Híbridas , Factor II del Crecimiento Similar a la Insulina/genética , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Transfección
14.
Genes Dev ; 23(22): 2598-603, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933149

RESUMEN

Recent observations highlight that the mammalian genome extensively communicates with itself via long-range chromatin interactions. The causal link between such chromatin cross-talk and epigenetic states is, however, poorly understood. We identify here a network of physically juxtaposed regions from the entire genome with the common denominator of being genomically imprinted. Moreover, CTCF-binding sites within the H19 imprinting control region (ICR) not only determine the physical proximity among imprinted domains, but also transvect allele-specific epigenetic states, identified by replication timing patterns, to interacting, nonallelic imprinted regions during germline development. We conclude that one locus can directly or indirectly pleiotropically influence epigenetic states of multiple regions on other chromosomes with which it interacts.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Impresión Genómica/genética , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Alelos , Animales , Células Cultivadas , Células Madre Embrionarias , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante , ARN no Traducido
15.
Nature ; 461(7261): 212-7, 2009 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-19741702

RESUMEN

The genome forms extensive and dynamic physical interactions with itself in the form of chromosome loops and bridges, thus exploring the three-dimensional space of the nucleus. It is now possible to examine these interactions at the molecular level, and we have gained glimpses of their functional implications. Chromosomal interactions can contribute to the silencing and activation of genes within the three-dimensional context of the nuclear architecture. Technical advances in detecting these interactions contribute to our understanding of the functional organization of the genome, as well as its adaptive plasticity in response to environmental changes during development and disease.


Asunto(s)
Posicionamiento de Cromosoma , Cromosomas/genética , Cromosomas/metabolismo , Regulación de la Expresión Génica , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas/química , Humanos , Conformación de Ácido Nucleico , Transcripción Genética
16.
Nat Rev Genet ; 10(4): 269-76, 2009 04.
Artículo en Inglés | MEDLINE | ID: mdl-19274048

RESUMEN

An overall link between the potential for gene transcription and the timing of replication in S phase is now well established in metazoans. Here we discuss emerging evidence that highlights the possibility that replication timing is causally linked with epigenetic reprogramming. In particular, we bring together conclusions from a range of studies to propose a model in which reprogramming factors determine the timing of replication and the implementation of reprogramming events requires passage through S phase. These considerations have implications for our understanding of development, evolution and diseases such as cancer.


Asunto(s)
Replicación del ADN/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Animales , Cromatina/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Evolución Molecular , Genoma , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Fase S
17.
J Immunol ; 181(4): 2878-86, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18684979

RESUMEN

The execution of appropriate gene expression patterns during immune responses is of eminent importance where CpG methylation has emerged as an essential mechanism for gene silencing. We have charted the methylation status of regulatory elements in the human IFNG gene encoding the signature cytokine of the Th1 response. Surprisingly, human naive CD4(+) T lymphocytes displayed hypermethylation at the IFNG promoter region, which is in sharp contrast to the completely demethylated status of this region in mice. Th1 differentiation induced demethylation of the IFNG promoter and the upstream conserved nucleotide sequence 1 enhancer region, whereas Th2-differentiated lymphocytes remained hypermethylated. Furthermore, CD19(+) B lymphocytes displayed hypomethylation at the IFNG promoter region with a similar pattern to Th1 effector cells. When investigating the methylation status among tumor-infiltrating CD4(+) T lymphocytes from patients with colon cancer, we found that tumor-infiltrating lymphocytes cells are inappropriately hypermethylated, and thus not confined to the Th1 lineage. In contrast, CD4(+) T cells from the tumor draining lymph node were significantly more demethylated than tumor-infiltrating lymphocytes. We conclude that there are obvious interspecies differences in the methylation status of the IFNG gene in naive CD4(+) T lymphocytes, where Th1 commitment in human lymphocytes involves demethylation before IFNG expression. Finally, investigations of tumor-infiltrating lymphocytes and CD4(+) cells from tumor draining lymph node demonstrate methylation of regulatory regions within key effector genes as an epigenetic mechanism of tumor-induced immunosuppression.


Asunto(s)
Islas de CpG/inmunología , Metilación de ADN , Tolerancia Inmunológica/genética , Interferón gamma/genética , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Regiones Promotoras Genéticas/inmunología , Animales , Línea Celular Tumoral , Técnicas de Cocultivo , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Secuencia Conservada/genética , Evolución Molecular , Humanos , Linfocitos Infiltrantes de Tumor/patología , Masculino , Ratones , Células TH1/citología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/patología , Transcripción Genética , Células Tumorales Cultivadas
19.
EMBO J ; 27(8): 1255-65, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18354495

RESUMEN

Ribosomal RNA synthesis is the eukaryotic cell's main transcriptional activity, but little is known about the chromatin domain organization and epigenetics of actively transcribed rRNA genes. Here, we show epigenetic and spatial organization of mouse rRNA genes at the molecular level. TTF-I-binding sites subdivide the rRNA transcription unit into functional chromatin domains and sharply delimit transcription factor occupancy. H2A.Z-containing nucleosomes occupy the spacer promoter next to a newly characterized TTF-I-binding site. The spacer and the promoter proximal TTF-I-binding sites demarcate the enhancer. DNA from both the enhancer and the coding region is hypomethylated in actively transcribed repeats. 3C analysis revealed an interaction between promoter and terminator regions, which brings the beginning and end of active rRNA genes into close contact. Reporter assays show that TTF-I mediates this interaction, thereby linking topology and epigenetic regulation of the rRNA genes.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Epigénesis Genética/fisiología , Genes de ARNr/fisiología , Regiones Promotoras Genéticas/fisiología , Regiones Terminadoras Genéticas , Factores de Transcripción/fisiología , Animales , Unión Competitiva/genética , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al ADN/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
20.
Nat Protoc ; 3(2): 303-13, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18274532

RESUMEN

The pioneering chromosome conformation capture (3C) method provides the opportunity to study chromosomal folding in the nucleus. It is based on formaldehyde cross-linking of living cells followed by enzyme digestion, intramolecular ligation and quantitative (Q)-PCR analysis. However, 3C requires prior knowledge of the bait and interacting sequence (termed interactor) rendering it less useful for genome-wide studies. As several recent reports document, this limitation has been overcome by exploiting a circular intermediate in a variant of the 3C method, termed 4C (for circular 3C). The strategic positioning of primers within the bait enables the identification of unknown interacting sequences, which form part of the circular DNA. Here, we describe a protocol for our 4C method, which produces a high-resolution interaction map potentially suitable for the analysis of cis-regulatory elements and for comparison with chromatin marks obtained by chromatin immunoprecipitation (ChIP) on chip at the sites of interaction. Following optimization of enzyme digestions and amplification conditions, the protocol can be completed in 2-3 weeks.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Técnicas Genéticas , Conformación de Ácido Nucleico , Cromatina/química , Cromosomas Humanos Par 11 , ADN/química , ADN/genética , Enzimas de Restricción del ADN/metabolismo , ADN Circular/química , ADN Circular/metabolismo , Formaldehído/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...