Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Res ; 22(2): 181-196, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37889141

RESUMEN

Irradiation (IR) is a highly effective cancer therapy; however, IR damage to tumor-adjacent healthy tissues can result in significant comorbidities and potentially limit the course of therapy. We have previously shown that protein kinase C delta (PKCδ) is required for IR-induced apoptosis and that inhibition of PKCδ activity provides radioprotection in vivo. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double-stranded break (DSB) repair through a mechanism that requires Sirtuin 6 (SIRT6). Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via nonhomologous end joining (NHEJ) and homologous recombination (HR) as evidenced by increased formation of DNA damage foci, increased expression of DNA repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis reveals increased chromatin associated H3K36me2 in PKCδ-depleted cells which is accompanied by chromatin disassociation of KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased SIRT6 expression, and depletion of SIRT6 reverses changes in chromatin accessibility, histone modification and DSB repair in PKCδ-depleted cells. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to regulate DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ. IMPLICATIONS: PKCδ controls sensitivity to irradiation by regulating DNA repair.


Asunto(s)
Proteínas F-Box , Sirtuinas , Humanos , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Reparación del ADN , Cromatina/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas F-Box/genética , Histona Demetilasas con Dominio de Jumonji/genética
2.
J Biol Chem ; 299(10): 105186, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37611829

RESUMEN

Loss of protein kinase Cδ (PKCδ) activity renders cells resistant to DNA damaging agents, including irradiation; however, the mechanism(s) underlying resistance is poorly understood. Here, we have asked if metabolic reprogramming by PKCδ contributes to radioprotection. Analysis of global metabolomics showed that depletion of PKCδ affects metabolic pathways that control energy production and antioxidant, nucleotide, and amino acid biosynthesis. Increased NADPH and nucleotide production in PKCδ-depleted cells is associated with upregulation of the pentose phosphate pathway (PPP) as evidenced by increased activation of G6PD and an increase in the nucleotide precursor, 5-phosphoribosyl-1-pyrophosphate. Stable isotope tracing with U-[13C6] glucose showed reduced utilization of glucose for glycolysis in PKCδ-depleted cells and no increase in U-[13C6] glucose incorporation into purines or pyrimidines. In contrast, isotope tracing with [13C5, 15N2] glutamine showed increased utilization of glutamine for synthesis of nucleotides, glutathione, and tricarboxylic acid intermediates and increased incorporation of labeled glutamine into pyruvate and lactate. Using a glycolytic rate assay, we confirmed that anaerobic glycolysis is increased in PKCδ-depleted cells; this was accompanied by a reduction in oxidative phosphorylation, as assayed using a mitochondrial stress assay. Importantly, pretreatment of cells with specific inhibitors of the PPP or glutaminase prior to irradiation reversed radioprotection in PKCδ-depleted cells, indicating that these cells have acquired codependency on the PPP and glutamine for survival. Our studies demonstrate that metabolic reprogramming to increase utilization of glutamine and nucleotide synthesis contributes to radioprotection in the context of PKCδ inhibition.

3.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292592

RESUMEN

Protein kinase C delta (PKCδ) is a ubiquitous kinase whose function is defined in part by localization to specific cellular compartments. Nuclear PKCδ is both necessary and sufficient for IR-induced apoptosis, while inhibition of PKCδ activity provides radioprotection in vivo. How nuclear PKCδ regulates DNA-damage induced cell death is poorly understood. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double stranded break (DSB) repair through a mechanism that requires SIRT6. Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via non-homologous end joining (NHEJ) and homologous recombination (HR) as evidenced by more rapid formation of NHEJ (DNA-PK) and HR (Rad51) DNA damage foci, increased expression of repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis revealed that PKCδ depletion increases chromatin associated H3K36me2, and reduces ribosylation of KDM2A and chromatin bound KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased expression of SIRT6, and depletion of SIRT6 reverses the changes in chromatin accessibility, histone modification and NHEJ and HR DNA repair seen with PKCδ-depletion. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to increase DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.

4.
J Biol Chem ; 296: 100401, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33571522

RESUMEN

We have previously shown that the tyrosine kinase inhibitors (TKIs) dasatinib and imatinib can protect salivary glands from irradiation (IR) damage without impacting tumor therapy. However, how they induce this protection is unknown. Here we show that TKIs mediate radioprotection by increasing the repair of DNA double-stranded breaks. DNA repair in IR-treated parotid cells, but not oral cancer cells, occurs more rapidly following pretreatment with imatinib or dasatinib and is accompanied by faster formation of DNA damage-induced foci. Similar results were observed in the parotid glands of mice pretreated with imatinib prior to IR, suggesting that TKIs "prime" cells for DNA repair. Mechanistically, we observed that TKIs increased IR-induced activation of DNA-PK, but not ATM. Pretreatment of parotid cells with the DNA-PK inhibitor NU7441 reversed the increase in DNA repair induced by TKIs. Reporter assays specific for homologous recombination (HR) or nonhomologous end joining (NHEJ) verified regulatation of both DNA repair pathways by imatinib. Moreover, TKIs also increased basal and IR-induced expression of genes associated with NHEJ (DNA ligase 4, Artemis, XLF) and HR (Rad50, Rad51 and BRCA1); depletion of DNA ligase 4 or BRCA1 reversed the increase in DNA repair mediated by TKIs. In addition, TKIs increased activation of the ERK survival pathway in parotid cells, and ERK was required for the increased survival of TKI-treated cells. Our studies demonstrate a dual mechanism by which TKIs provide radioprotection of the salivary gland tissues and support exploration of TKIs clinically in head and neck cancer patients undergoing IR therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Traumatismos Experimentales por Radiación/prevención & control , Glándulas Salivales/efectos de los fármacos , Animales , Células Cultivadas , Dasatinib/farmacología , Femenino , Humanos , Mesilato de Imatinib/farmacología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Proteínas Tirosina Quinasas/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Glándulas Salivales/metabolismo , Glándulas Salivales/efectos de la radiación
5.
Mol Cancer Res ; 17(10): 1985-1998, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31300540

RESUMEN

The combined loss of CHD1 and MAP3K7 promotes aggressive prostate cancer by unknown mechanisms. Because both of these genes are lost genetically in prostate cancer, they cannot be directly targeted. We applied an established computational systems pharmacology approach (TRAP) to identify altered signaling pathways and associated druggable targets. We compared gene expression profiles of prostate cancer with coloss of CHD1 and MAP3K7 with prostate cancer diploid for these genes using The Cancer Genome Atlas patient samples. This analysis prioritized druggable target genes that included CDK1 and CDK2. We validated that inhibitors of these druggable target genes, including the CDK1/CDK2 inhibitor dinaciclib, had antiproliferative and cytotoxic effects selectively on mouse prostate cells with knockdown of Chd1 and Map3k7. Dinaciclib had stronger effects on prostate cells with suppression of Map3k7 independent of Chd1 and also compared with cells without loss of Map3k7. Dinaciclib treatment reduced expression of homologous recombination (HR) repair genes such as ATM, ATR, BRCA2, and RAD51, blocked BRCA1 phosphorylation, reduced RAD51 foci formation, and increased γH2AX foci selectively in prostate cells with suppression of Map3k7, thus inhibiting HR repair of chromosomal double-strand breaks. Dinaciclib-induced HR disruption was also observed in human prostate cells with knockdown of MAP3K7. Cotreatment of dinaciclib with DNA-damaging agents or PARP inhibitor resulted in a stronger cytotoxic effect on prostate cells with suppression of MAP3K7 compared with those without loss of MAP3K7, or to each single agent. IMPLICATIONS: These findings demonstrate that loss of MAP3K7 is a main contributing factor to drug response through disruption of HR in prostate cancer.


Asunto(s)
Daño del ADN/efectos de los fármacos , Recombinación Homóloga/genética , Quinasas Quinasa Quinasa PAM/genética , Neoplasias de la Próstata/genética , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/patología
6.
J Biol Chem ; 294(12): 4488-4497, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30679314

RESUMEN

DNA damage-mediated activation of extracellular signal-regulated kinase (ERK) can regulate both cell survival and cell death. We show here that ERK activation in this context is biphasic and that early and late activation events are mediated by distinct upstream signals that drive cell survival and apoptosis, respectively. We identified the nuclear kinase mitogen-sensitive kinase 1 (MSK1) as a downstream target of both early and late ERK activation. We also observed that activation of ERK→MSK1 up to 4 h after DNA damage depends on epidermal growth factor receptor (EGFR), as EGFR or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)/ERK inhibitors or short hairpin RNA-mediated MSK1 depletion enhanced cell death. This prosurvival response was partially mediated through enhanced DNA repair, as EGFR or MEK/ERK inhibitors delayed DNA damage resolution. In contrast, the second phase of ERK→MSK1 activation drove apoptosis and required protein kinase Cδ (PKCδ) but not EGFR. Genetic disruption of PKCδ reduced ERK activation in an in vivo irradiation model, as did short hairpin RNA-mediated depletion of PKCδ in vitro In both models, PKCδ inhibition preferentially suppressed late activation of ERK. We have shown previously that nuclear localization of PKCδ is necessary and sufficient for apoptosis. Here we identified a nuclear PKCδ→ERK→MSK1 signaling module that regulates apoptosis. We also show that expression of nuclear PKCδ activates ERK and MSK1, that ERK activation is required for MSK1 activation, and that both ERK and MSK1 activation are required for apoptosis. Our findings suggest that location-specific activation by distinct upstream regulators may enable distinct functional outputs from common signaling pathways.


Asunto(s)
Apoptosis , Supervivencia Celular , Daño del ADN , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Activación Enzimática , Receptores ErbB/metabolismo , Células HEK293 , Humanos
7.
Oncotarget ; 7(14): 17905-19, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26918447

RESUMEN

We have previously shown that Protein Kinase C delta (PKCδ) functions as a tumor promoter in non-small cell lung cancer (NSCLC), specifically in the context of K-ras addiction. Here we define a novel PKCδ -> integrin αVß3 ->Extracellular signal-Regulated Kinase (ERK) pathway that regulates the transformed growth of K-ras dependent NSCLC cells. To explore how PKCδ regulates tumorigenesis, we performed mRNA expression analysis in four KRAS mutant NSCLC cell lines that stably express scrambled shRNA or a PKCδ targeted shRNA. Analysis of PKCδ-dependent mRNA expression identified 3183 regulated genes, 210 of which were specifically regulated in K-ras dependent cells. Genes that regulate extracellular matrix and focal adhesion pathways were most highly represented in this later group. In particular, expression of the integrin pair, αVß3, was specifically reduced in K-ras dependent cells with depletion of PKCδ, and correlated with reduced ERK activation and reduced transformed growth as assayed by clonogenic survival. Re-expression of PKCδ restored ITGAV and ITGB3 mRNA expression, ERK activation and transformed growth, and this could be blocked by pretreatment with a αVß3 function-blocking antibody, demonstrating a requirement for integrin αVß3 downstream of PKCδ. Similarly, expression of integrin αV restored ERK activation and transformed growth in PKCδ depleted cells, and this could also be inhibited by pretreatment with PD98059.Our studies demonstrate an essential role for αVß3 and ERK signalingdownstream of PKCδ in regulating the survival of K-ras dependent NSCLC cells, and identify PKCδ as a novel therapeutic target for the subset of NSCLC patients with K-ras dependent tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Integrina alfaVbeta3/biosíntesis , Neoplasias Pulmonares/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteínas ras/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Integrina alfaVbeta3/metabolismo , Neoplasias Pulmonares/patología , Fosforilación , Análisis de Supervivencia , Transfección
8.
J Biol Chem ; 286(41): 35716-35724, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21865164

RESUMEN

PKCδ translocates into the nucleus in response to apoptotic agents and functions as a potent cell death signal. Cytoplasmic retention of PKCδ and its transport into the nucleus are essential for cell homeostasis, but how these processes are regulated is poorly understood. We show that PKCδ resides in the cytoplasm in a conformation that precludes binding of importin-α. A structural model of PKCδ in the inactive state suggests that the nuclear localization sequence (NLS) is prevented from binding to importin-α through intramolecular contacts between the C2 and catalytic domains. We have previously shown that PKCδ is phosphorylated on specific tyrosine residues in response to apoptotic agents. Here, we show that phosphorylation of PKCδ at Tyr-64 and Tyr-155 results in a conformational change that allows exposure of the NLS and binding of importin-α. In addition, Hsp90 binds to PKCδ with similar kinetics as importin-α and is required for the interaction of importin-α with the NLS. Finally, we elucidate a role for a conserved PPxxP motif, which overlaps the NLS, in nuclear exclusion of PKCδ. Mutagenesis of the conserved prolines to alanines enhanced importin-α binding to PKCδ and induced its nuclear import in resting cells. Thus, the PPxxP motif is important for maintaining a conformation that facilitates cytosplasmic retention of PKCδ. Taken together, this study establishes a novel mechanism that retains PKCδ in the cytoplasm of resting cells and regulates its nuclear import in response to apoptotic stimuli.


Asunto(s)
Apoptosis/fisiología , Núcleo Celular/enzimología , Citoplasma/enzimología , Proteína Quinasa C-delta/metabolismo , alfa Carioferinas/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Secuencias de Aminoácidos , Animales , Línea Celular , Núcleo Celular/genética , Citoplasma/genética , Humanos , Ratones , Mutagénesis , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Fosforilación/fisiología , Unión Proteica/fisiología , Proteína Quinasa C-delta/genética , Ratas , alfa Carioferinas/genética
9.
Cancer Res ; 71(6): 2087-97, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21335545

RESUMEN

Oncogenic activation of K-ras occurs commonly in non-small cell lung cancer (NSCLC), but strategies to therapeutically target this pathway have been challenging to develop. Information about downstream effectors of K-ras remains incomplete, and tractable targets are yet to be defined. In this study, we investigated the role of protein kinase C δ (PKCδ) in K-ras-dependent lung tumorigenesis by using a mouse carcinogen model and human NSCLC cells. The incidence of urethane-induced lung tumors was decreased by 69% in PKCδ-deficient knockout (δKO) mice compared with wild-type (δWT) mice. δKO tumors are smaller and showed reduced proliferation. DNA sequencing indicated that all δWT tumors had activating mutations in KRAS, whereas only 69% of δKO tumors did, suggesting that PKCδ acts as a tumor promoter downstream of oncogenic K-ras while acting as a tumor suppressor in other oncogenic contexts. Similar results were obtained in a panel of NSCLC cell lines with oncogenic K-ras but which differ in their dependence on K-ras for survival. RNA interference-mediated attenuation of PKCδ inhibited anchorage-independent growth, invasion, migration, and tumorigenesis in K-ras-dependent cells. These effects were associated with suppression of mitogen-activated protein kinase pathway activation. In contrast, PKCδ attenuation enhanced anchorage-independent growth, invasion, and migration in NSCLC cells that were either K-ras-independent or that had WT KRAS. Unexpectedly, our studies indicate that the function of PKCδ in tumor cells depends on a specific oncogenic context, as loss of PKCδ in NSCLC cells suppressed transformed growth only in cells dependent on oncogenic K-ras for proliferation and survival.


Asunto(s)
Neoplasias Pulmonares/genética , Mutación , Proteína Quinasa C-delta/genética , Proteínas ras/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Activación Enzimática , Femenino , Humanos , Immunoblotting , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Quinasa C-delta/metabolismo , Interferencia de ARN , Carga Tumoral , Uretano , Proteínas ras/metabolismo
10.
J Biol Chem ; 282(31): 22307-14, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17562707

RESUMEN

Protein kinase C delta (PKC delta) mediates apoptosis downstream of many apoptotic stimuli. Because of its ubiquitous expression, tight regulation of the proapoptotic function of PKC delta is critical for cell survival. Full-length PKC delta is found in all cells, whereas the catalytic fragment of PKC delta, generated by caspase cleavage, is only present in cells undergoing apoptosis. Here we show that full-length PKC delta transiently accumulates in the nucleus in response to etoposide and that nuclear translocation precedes caspase cleavage of PKC delta. Nuclear PKC delta is either cleaved by caspase 3, resulting in accumulation of the catalytic fragment in the nucleus, or rapidly exported by a Crm1-sensitive pathway, thereby assuring that sustained nuclear accumulation of PKC delta is coupled to caspase activation. Nuclear accumulation of PKC delta is necessary for caspase cleavage, as mutants of PKC delta that do not translocate to the nucleus are not cleaved. However, caspase cleavage of PKC delta per se is not required for apoptosis, as an uncleavable form of PKC delta induces apoptosis when retained in the nucleus by the addition of an SV-40 nuclear localization signal. Finally, we show that kinase negative full-length PKC delta does not translocate to the nucleus in apoptotic cells but instead inhibits apoptosis by blocking nuclear import of endogenous PKC delta. These studies demonstrate that generation of the PKC delta catalytic fragment is a critical step for commitment to apoptosis and that nuclear import and export of PKC delta plays a key role in regulating the survival/death pathway.


Asunto(s)
Apoptosis , Núcleo Celular/metabolismo , Proteína Quinasa C-delta/metabolismo , Transporte Activo de Núcleo Celular , Catálisis , Supervivencia Celular , Fragmentación del ADN , Activación Enzimática , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Etiquetado Corte-Fin in Situ , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...