Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; : 100598, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032560

RESUMEN

All-trans retinoic acid (atRA), a metabolite of vitamin A, reduces hepatic lipid accumulation in liver steatosis model animals. Lipophagy, a new lipolysis pathway, degrades a lipid droplet (LD) via autophagy in adipose tissue and the liver. We recently found that atRA induces lipophagy in adipocytes. However, it remains unclear whether atRA induces lipophagy in hepatocytes. In this study, we investigated the effects of atRA on lipophagy in Hepa1c1c7 cells and the liver of mice fed a high-fat diet (HFD). Firstly, we confirmed that atRA induced autophagy in Hepa1c1c7 cells by Western blotting and the GFP-LC3-mCherry probe. Next, we evaluated the lipolysis in fatty Hepa1c1c7 cells treated with the knockdown of Atg5, an essential gene in autophagy induction. Atg5-knockdown partly suppressed the atRA-induced lipolysis in fatty Hepa1c1c7 cells. We also found that atRA reduced the protein, but not mRNA, expression of Rubicon, a negative regulator of autophagy, in Hepa1c1c7 cells and the liver of HFD-fed mice. Rubicon-knockdown partly inhibited the atRA-induced lipolysis in fatty Hepa1c1c7 cells. In addition, atRA reduced hepatic Rubicon expression in young mice, but the effect of atRA on it diminished in aged mice. Lastly, we investigated the mechanism underlying reduced Rubicon protein expression by atRA in hepatocytes. A protein synthesis inhibitor, but not proteasome or lysosomal inhibitors, significantly blocked the reduction of Rubicon protein expression by atRA in Hepa1c1c7 cells. These results suggest that atRA may promote lipophagy in fatty hepatocytes by reducing hepatic Rubicon expression via inhibiting protein synthesis. (243/250 words).

2.
J Nutr Biochem ; 126: 109589, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295886

RESUMEN

Lipophagy is defined as a lipolysis pathway that degrades lipid droplet (LD) via autophagy. All-trans retinoic acid (atRA), a metabolite of vitamin A, stimulates lipolysis through hormone-sensitive lipase and ß-oxidation. However, the regulation of lipolysis by atRA-induced autophagy in adipocytes remains unclear. In this study, we investigated the effect of atRA on autophagy in epididymal fat of mice and the molecular mechanisms of autophagy in 3T3-L1 adipocytes. Western blotting showed that atRA decreased the expression of p62, a cargo receptor for autophagic degradation, and increased the expression of the lipidated LC3B (LC3B-II), an autophagy marker, in epididymal fat. Next, we confirmed that atRA increased autophagic flux in differentiated 3T3-L1 cells using the GFP-LC3-RFP-LC3ΔG probe. Immunofluorescent staining revealed that the colocalization of LC3B with perilipin increased in differentiated 3T3-L1 cells treated with atRA. The knockdown of Atg5, an essential gene in autophagy induction, partly suppressed the atRA-induced release of non-esterified fatty acid (NEFA) from LDs in differentiated 3T3-L1 cells. atRA time-dependently elicited the phosphorylation of AMPK and Beclin1, autophagy-inducing factors, in mature 3T3-L1 adipocytes. Inversely, atRA decreased the protein expression of Rubicon, an autophagy repressor, in differentiated 3T3-L1 cells and epididymal fat. Interestingly, the expression of ALDH1A1, atRA-synthesizing enzymes, increased in epididymal fat with decreased protein expression of Rubicon in aged mice. These results suggest that atRA may partially induce lipolysis through lipophagy by activating the AMPK-Beclin1 signaling pathway in the adipocytes and increased atRA levels may contribute to decreased Rubicon expression in the epididymal fat of aged mice. (248/250 words).


Asunto(s)
Proteínas Quinasas Activadas por AMP , Transducción de Señal , Ratones , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Lipólisis , Tretinoina/farmacología , Tretinoina/metabolismo , Autofagia , Adipocitos , Células 3T3-L1
3.
Am J Physiol Renal Physiol ; 326(3): F411-F419, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38234299

RESUMEN

Zinc (Zn) is an essential trace element in various biological processes. Chronic kidney disease (CKD) often leads to hypozincemia, resulting in further progression of CKD. In CKD, intestinal Zn absorption, the main regulator of systemic Zn metabolism, is often impaired; however, the mechanism underlying Zn malabsorption remains unclear. Here, we evaluated intestinal Zn absorption capacity in a rat model of CKD induced by 5/6 nephrectomy (5/6 Nx). Rats were given Zn and the incremental area under the plasma Zn concentration-time curve (iAUC) was measured as well as the expression of ZIP4, an intestinal Zn transporter. We found that 5/6 Nx rats showed lower iAUC than sham-operated rats, but expression of ZIP4 protein was upregulated. We therefore focused on other Zn absorption regulators to explore the mechanism by which Zn absorption was substantially decreased. Because some phosphate compounds inhibit Zn absorption by coprecipitation and hyperphosphatemia is a common symptom in advanced CKD, we measured inorganic phosphate (Pi) levels. Pi was elevated in not only serum but also the intestinal lumen of 5/6 Nx rats. Furthermore, intestinal intraluminal Pi administration decreased the iAUC in a dose-dependent manner in normal rats. In vitro, increased Pi concentration decreased Zn solubility under physiological conditions. Furthermore, dietary Pi restriction ameliorated hypozincemia in 5/6 Nx rats. We conclude that hyperphosphatemia or excess Pi intake is a factor in Zn malabsorption and hypozincemia in CKD. Appropriate management of hyperphosphatemia will be useful for prevention and treatment of hypozincemia in patients with CKD.NEW & NOTEWORTHY We demonstrated that elevated intestinal luminal Pi concentration can suppress intestinal Zn absorption activity without decreasing the expression of the associated Zn transporter. Increased intestinal luminal Pi led to the formation of an insoluble complex with Zn while dietary Pi restriction or administration of a Pi binder ameliorated hypozincemia in chronic kidney disease model rats. Therefore, modulation of dietary Pi by Pi restriction or a Pi binder might be useful for the treatment of hypozincemia and hyperphosphatemia.


Asunto(s)
Hiperfosfatemia , Insuficiencia Renal Crónica , Humanos , Ratas , Animales , Fosfatos/metabolismo , Hiperfosfatemia/tratamiento farmacológico , Zinc , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/complicaciones , Nefrectomía/efectos adversos , Absorción Intestinal
4.
J Clin Biochem Nutr ; 73(3): 198-204, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970550

RESUMEN

Hyperphosphatemia is an independent and non-classical risk factor of cardiovascular disease and mortality in patients with chronic kidney disease (CKD). Increased levels of extracellular inorganic phosphate (Pi) are known to directly induce vascular calcification, but the detailed underlying mechanism has not been clarified. Although serum Pi levels during the growth period are as high as those observed in hyperphosphatemia in adult CKD, vascular calcification does not usually occur during growth. Here, we have examined whether the defence system against Pi-induced vascular calcification can exist during the growth period using mice model. We found that calcification propensity of young serum (aged 3 weeks) was significantly lower than that of adult serum (10 months), possibly due to high fetuin-A levels. In addition, when the aorta was cultured in high Pi medium in vitro, obvious calcification was observed in the adult aorta but not in the young aorta. Furthermore, culture in high Pi medium increased the mRNA level of tissue-nonspecific alkaline phosphatase (TNAP), which degrades pyrophosphate, only in the adult aorta. Collectively, our findings indicate that the aorta in growing mouse may be resistant to Pi-induced vascular calcification via a mechanism in which high serum fetuin-A levels and suppressed TNAP expression.

5.
J Clin Biochem Nutr ; 73(3): 221-227, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970557

RESUMEN

Disorder of phosphate metabolism is a common pathological condition in chronic kidney disease patients. Excessive intake of dietary phosphate deteriorates chronic kidney disease and various complications including cardiovascular and infectious diseases. Recent reports have demonstrated that gut microbiome disturbance is associated with both the etiology and progression of chronic kidney disease. However, the relationship between dietary phosphate and gut microbiome remains unknown. Here, we examined the effects of excessive intake of phosphate on gut microbiome. Five-week-old male C57BL/6J mice were fed either control diet or high phosphate diet for eight weeks. Analysis of the gut microbiota was carried out using MiSeq next generation sequencer, and short-chain fatty acids were determined with GC-MS. In analysis of gut microbiota, significantly increased in Erysipelotrichaceae and decreased in Ruminococcaceae were observed in high phosphate diet group. Furthermore, high phosphate diet induced reduction of microbial diversity and decreased mRNA levels of colonic tight junction markers. These results suggest that the excessive intake of dietary phosphate disturbs gut microbiota and affects intestinal barrier function.

6.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37221017

RESUMEN

mTORC1 is the key rheostat controlling the cellular metabolic state. Of the various inputs to mTORC1, the most potent effector of intracellular nutrient status is amino acid supply. Despite an established role for MAP4K3 in promoting mTORC1 activation in the presence of amino acids, the signaling pathway by which MAP4K3 controls mTORC1 activation remains unknown. Here, we examined the process of MAP4K3 regulation of mTORC1 and found that MAP4K3 represses the LKB1-AMPK pathway to achieve robust mTORC1 activation. When we sought the regulatory link between MAP4K3 and LKB1 inhibition, we discovered that MAP4K3 physically interacts with the master nutrient regulatory factor sirtuin-1 (SIRT1) and phosphorylates SIRT1 to repress LKB1 activation. Our results reveal the existence of a novel signaling pathway linking amino acid satiety with MAP4K3-dependent suppression of SIRT1 to inactivate the repressive LKB1-AMPK pathway and thereby potently activate the mTORC1 complex to dictate the metabolic disposition of the cell.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Sirtuina 1 , Transducción de Señal , Aminoácidos , Diana Mecanicista del Complejo 1 de la Rapamicina
7.
J Nutr Biochem ; 106: 109017, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35461903

RESUMEN

Lipophagy, a form of selective autophagy, degrades lipid droplet (LD) in adipose tissue and the liver. The chemotherapeutic isothiocyanate sulforaphane (SFN) contributes to lipolysis through the activation of hormone-sensitive lipase and the browning of white adipocytes. However, the details concerning the regulation of lipolysis in adipocytes by SFN-mediated autophagy remain unclear. In this study, we investigated the effects of SFN on autophagy in the epididymal fat of mice fed a high-fat diet (HFD) or control-fat diet and on the molecular mechanisms of autophagy in differentiated 3T3-L1 cells. Western blotting revealed that the protein expression of lipidated LC3 (LC3-II), an autophagic substrate, was induced after 3T3-L1 adipocytes treatment with SFN. In addition, SFN increased the LC3-II protein expression in the epididymal fat of mice fed an HFD. Immunofluorescence showed that the SFN-induced LC3 expression was co-localized with LDs in 3T3-L1 adipocytes and with perilipin, the most abundant adipocyte-specific protein, in adipocytes of mice fed an HFD. Next, we confirmed that SFN activates autophagy flux in differentiated 3T3-L1 cells using the mCherry-EGFP-LC3 and GFP-LC3-RFP-LC3ΔG probe. Furthermore, we examined the induction mechanisms of autophagy by SFN in 3T3-L1 adipocytes using western blotting. ATG5 knockdown partially blocked the SFN-induced release of fatty acids from LDs in mature 3T3-L1 adipocytes. SFN time-dependently elicited the phosphorylation of AMPK, the dephosphorylation of mTOR, and the phosphorylation of ULK1 in differentiated 3T3-L1 cells. Taken together, these results suggest that SFN may provoke lipophagy through AMPK-mTOR-ULK1 pathway signaling, resulting in partial lipolysis of adipocytes.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Homólogo de la Proteína 1 Relacionada con la Autofagia , Isotiocianatos , Serina-Treonina Quinasas TOR , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Animales , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Isotiocianatos/farmacología , Lipólisis/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Sulfóxidos/farmacología , Serina-Treonina Quinasas TOR/metabolismo
8.
Life Sci Alliance ; 5(7)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35318262

RESUMEN

All-trans retinoic acid (ATRA) increases the sensitivity to unfolded protein response in differentiating leukemic blasts. The downstream transcriptional factor of PERK, a major arm of unfolded protein response, regulates muscle differentiation. However, the role of growth arrest and DNA damage-inducible protein 34 (GADD34), one of the downstream factors of PERK, and the effects of ATRA on GADD34 expression in muscle remain unclear. In this study, we identified ATRA increased the GADD34 expression independent of the PERK signal in the gastrocnemius muscle of mice. ATRA up-regulated GADD34 expression through the transcriptional activation of GADD34 gene via inhibiting the interaction of homeobox Six1 and transcription co-repressor TLE3 with the MEF3-binding site on the GADD34 gene promoter in skeletal muscle. ATRA also inhibited the interaction of TTP, which induces mRNA degradation, with AU-rich element on GADD34 mRNA via p-38 MAPK, resulting in the instability of GADD34 mRNA. Overexpressed GADD34 in C2C12 cells changes the type of myosin heavy chain in myotubes. These results suggest ATRA increases GADD34 expression via transcriptional and post-transcriptional regulation, which changes muscle fiber type.


Asunto(s)
Fibras Musculares Esqueléticas , Proteína Fosfatasa 1 , Tretinoina , Animales , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Ratones , Fibras Musculares Esqueléticas/metabolismo , Proteína Fosfatasa 1/metabolismo , ARN Mensajero , Factores de Transcripción/genética , Tretinoina/metabolismo , Tretinoina/farmacología
9.
NPJ Sci Food ; 5(1): 25, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504092

RESUMEN

We previously reported that intramuscular injections of ubiquitin ligase CBLB inhibitory pentapeptide (Cblin; Asp-Gly-pTyr-Met-Pro) restored lost muscle mass caused by sciatic denervation. Here, we detected Cblin on the basolateral side of Caco-2 cells after being placed on the apical side, and found that cytochalasin D, a tight junction opener, enhanced Cblin transport. Orally administered Cblin was found in rat plasma, indicating that intact Cblin was absorbed in vitro and in vivo. Furthermore, transgenic Cblin peptide-enriched rice (CbR) prevented the denervation-induced loss of muscle mass and the upregulation of muscle atrophy-related ubiquitin ligases in mice. These findings indicated that CbR could serve as an alternative treatment for muscle atrophy.

10.
Antioxidants (Basel) ; 9(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261065

RESUMEN

Autophagy is a major degradation system for intracellular macromolecules. Its decline with age or obesity is related to the onset and development of various intractable diseases. Although dietary phytochemicals are expected to enhance autophagy for preventive medicine, few studies have addressed their effects on the autophagy flux, which is the focus of the current study. Herein, 67 dietary phytochemicals were screened using a green fluorescent protein (GFP)-microtubule-associated protein light chain 3 (LC3)-red fluorescent protein (RFP)-LC3ΔG probe for the quantitative assessment of autophagic degradation. Among them, isorhamnetin, chrysoeriol, 2,2',4'-trihydroxychalcone, and zerumbone enhanced the autophagy flux in HeLa cells. Meanwhile, analysis of the structure-activity relationships indicated that the 3'-methoxy-4'-hydroxy group on the B-ring in the flavone skeleton and an ortho-phenolic group on the chalcone B-ring were crucial for phytochemicals activities. These active compounds were also effective in colon carcinoma Caco-2 cells, and some of them increased the expression of p62 protein, a typical substrate of autophagic proteolysis, indicating that phytochemicals impact p62 levels in autophagy-dependent and/or -independent manners. In addition, these compounds were characterized by distinct modes of action. While isorhamnetin and chrysoeriol enhanced autophagy in an mTOR signaling-dependent manner, the actions of 2,2',4'-trihydroxychalcone and zerumbone were independent of mTOR signaling. Hence, these dietary phytochemicals may prove effective as potential preventive or therapeutic strategies for lifestyle-related diseases.

11.
J Clin Biochem Nutr ; 67(2): 179-187, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33041516

RESUMEN

Skeletal muscle atrophy is associated with mortality and poor prognosis in patients with chronic kidney disease (CKD). However, underlying mechanism by which CKD causes muscle atrophy has not been completely understood. The quality of lipids (lipoquality), which is defined as the functional features of diverse lipid species, has recently been recognized as the pathology of various diseases. In this study, we investigated the roles of the stearoyl-CoA desaturase (SCD), which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, in skeletal muscle on muscle atrophy in CKD model animals. In comparison to control rats, CKD rats decreased the SCD activity and its gene expression in atrophic gastrocnemius muscle. Next, oleic acid blocked the reduction of the thickness of C2C12 myotubes and the increase of the endoplasmic reticulum stress induced by SCD inhibitor. Furthermore, endoplasmic reticulum stress inhibitor ameliorated CKD-induced muscle atrophy (the weakness of grip strength and the decrease of muscle fiber size of gastrocnemius muscle) in mice and the reduction of the thickness of C2C12 myotubes by SCD inhibitor. These results suggest that the repression of SCD activity causes muscle atrophy through excessive endoplasmic reticulum stress in CKD.

12.
Biosci Biotechnol Biochem ; 84(6): 1221-1231, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32046625

RESUMEN

Lysosome is the principal organelle for the ultimate degradation of cellular macromolecules, which are delivered through endocytosis, phagocytosis, and autophagy. The lysosomal functions have been found to be impaired by fatty foods and aging, and more importantly, the lysosomal dysfunction in macrophages has been reported as a risk of atherosclerosis development. In this study, we searched for dietary polyphenols which possess the activity for enhancing the lysosomal degradation in J774.1, a murine macrophage-like cell line. Screening test utilizing DQ-BSA digestion identified isorhamnetin (3'-O-methylquercetin) as an active compound. Interestingly, structural comparison to inactive flavonols revealed that the chemical structure of the B-ring moiety in isorhamnetin is the primary determinant of its lysosome-enhancing activity. Unexpectedly isorhamnetin failed to inhibit mTORC1-TFEB signaling, a master regulator of lysosomal biogenesis and function. Our data suggested that the other molecular mechanism might be critical for the regulation of lysosomes in macrophages.Abbreviations: ANOVA: analysis of variance; ApoE: apolipoprotein E; ATP6V0D2: ATPase H+ transporting V0 subunit d2; BAF: bafilomycin A1; BODIPY: boron dipyrromethene; BSA: bovine serum albumin; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified eagle medium; DMSO: dimethyl sulfoxide; EGCG: epigallocatechin-3-gallate; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HPLC: high-performance liquid chromatography; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LC-MS/MS: liquid chromatography tandem mass spectrometry; MITF: microphthalmia-associated transcription factor; MRM: multiple reaction monitoring; mTORC1: mechanistic target of rapamycin complex 1; PBS: phosphate-buffered saline; PPARγ: peroxisome proliferator-activated receptor γ; RT-qPCR: reverse transcription quantitative polymerase chain reaction; SDS: sodium dodecyl sulfate; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment protein receptor; TBS: Tris-buffered saline; TFA: trifluoroacetic acid; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcriptional factor EB; TFEC: transcription factor EC; V-ATPase: vacuolar-type proton ATPase.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Proteolisis/efectos de los fármacos , Quercetina/análogos & derivados , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Cromatografía Líquida de Alta Presión , Disacáridos/química , Disacáridos/farmacología , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Plásmidos/genética , Quercetina/química , Quercetina/farmacología , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Masas en Tándem , Transfección
13.
Biochem J ; 477(4): 817-831, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32016357

RESUMEN

Inorganic phosphate (Pi) homeostasis is regulated by intestinal absorption via type II sodium-dependent co-transporter (Npt2b) and by renal reabsorption via Npt2a and Npt2c. Although we previously reported that vitamin A-deficient (VAD) rats had increased urine Pi excretion through the decreased renal expression of Npt2a and Npt2c, the effect of vitamin A on the intestinal Npt2b expression remains unclear. In this study, we investigated the effects of treatment with all-trans retinoic acid (ATRA), a metabolite of vitamin A, on the Pi absorption and the Npt2b expression in the intestine of VAD rats, as well as and the underlying molecular mechanisms. In VAD rats, the intestinal Pi uptake activity and the expression of Npt2b were increased, but were reduced by the administration of ATRA. The transcriptional activity of reporter plasmid containing the promoter region of the rat Npt2b gene was reduced by ATRA in NIH3T3 cells overexpressing retinoic acid receptor (RAR) and retinoid X receptor (RXR). On the other hand, CCAAT/enhancer-binding proteins (C/EBP) induced transcriptional activity of the Npt2b gene. Knockdown of the C/EBP gene and a mutation analysis of the C/EBP responsible element in the Npt2b gene promoter indicated that C/EBP plays a pivotal role in the regulation of Npt2b gene transcriptional activity by ATRA. EMSA revealed that the RAR/RXR complex inhibits binding of C/EBP to Npt2b gene promoter. Together, these results suggest that ATRA may reduce the intestinal Pi uptake by preventing C/EBP activation of the intestinal Npt2b gene.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Intestino Delgado/metabolismo , Riñón/metabolismo , Regiones Promotoras Genéticas , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología , Animales , Antineoplásicos/farmacología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Hipofosfatemia Familiar/metabolismo , Hipofosfatemia Familiar/patología , Hipofosfatemia Familiar/prevención & control , Intestino Delgado/efectos de los fármacos , Riñón/efectos de los fármacos , Masculino , Ratones , Células 3T3 NIH , Ratas , Ratas Wistar , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo
14.
J Clin Biochem Nutr ; 65(2): 91-98, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31592057

RESUMEN

Curcumin has been shown to have anti-obesity effects in animal studies. Although several molecular mechanisms of action have been reported, the initial or upstream molecular events remain to be revealed. In this study, we found that curcumin or heat shock treatment up-regulated the expression of adipose triglyceride lipase (ATGL) in Huh7 hepatoma cells, which resulted in acceleration of lipolysis. Interestingly, perturbation of protein homeostasis was seen in curcumin-treated cells, as detected by formation of numerous ubiquitinated proteins and conjugated proteins with p62 (SQSTM). Curcumin activated the protein expression of molecular chaperones, such as heat shock protein (HSP)40 and HSP70. Pre-treatment of the cells with 4-phenylbutyric acid, a chemical chaperone, suppressed proteo-stress induced by curcumin and reduced its lipolysis effect. Importantly, the cytotoxicity of curcumin was markedly alleviated when intracellular triglyceride was consumed by the polyphenol. Thus, energy supplementation from lipolysis may play substantial roles in adaptation and survival of curcumin-exposed cells. To support this notion, the cytotoxicity of curcumin was aggravated in ATGL-knockdown cells. Curcumin decreased intracellular ATP for activating AMP-activated protein kinase, which initiates catabolic pathways including ATGL-dependent lipolysis. Taken together, we propose a hypothesis that curcumin induces lipolysis to compensate for ATP reduction due to its proteo-stress effects.

15.
J Agric Food Chem ; 67(27): 7640-7649, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-30951310

RESUMEN

Sesamin, a representative sesame lignan, has health-promoting activities. Sesamin is converted into catechol derivatives and further into their glucuronides or sulfates in vivo, whereas the biological activities of sesamin metabolites remain unclear. We examined the inhibitory effects of sesamin metabolites on the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse macrophage-like J774.1 cells and found that a monocatechol derivative SC1, (7α,7'α,8α,8'α)-3,4-dihydroxy-3',4'-methylenedioxy-7,9':7',9-diepoxylignane, has a much higher activity than sesamin and other metabolites. The inhibitory effects of SC1 glucuronides were time-dependently enhanced, associated with the intracellular accumulation of SC1 and the methylated form. SC1 glucuronides and SC1 attenuated the expression of inducible NO synthase (iNOS) and upstream interferon-ß (IFN-ß) in the LPS-stimulated macrophages. The inhibitory effects of SC1 glucuronides against NO production were canceled by the ß-glucuronidase inhibitor and enhanced by the catechol-O-methyltransferase inhibitor. Our results suggest that SC1 glucuronides exert the anti-inflammatory effects by inhibiting the IFN-ß/iNOS signaling through macrophage-mediated deconjugation.


Asunto(s)
Antiinflamatorios , Catecoles/farmacología , Dioxoles/farmacología , Glucurónidos/farmacología , Interferón beta/antagonistas & inhibidores , Lignanos/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Animales , Catecol O-Metiltransferasa/metabolismo , Catecoles/química , Catecoles/metabolismo , Línea Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Dioxoles/metabolismo , Glucuronidasa/metabolismo , Glucurónidos/química , Lignanos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Estructura Molecular
16.
Calcif Tissue Int ; 104(6): 667-678, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30671592

RESUMEN

Inorganic phosphate (Pi) is an essential nutrient for maintaining various biological functions, particularly during growth periods. Excess intake of dietary Pi increases the secretion of fibroblast growth factor 23 (FGF23) and parathyroid hormone to maintain plasma Pi levels. FGF23 is a potent phosphaturic factor that binds to the α-klotho/FGFR complex in the kidney to promote excretion of Pi into the urine. In addition, excess intake of dietary Pi decreases renal α-klotho expression. Down-regulation or lack of α-klotho induces a premature aging-like phenotype, resulting from hyperphosphatemia, and leading to conditions such as ectopic calcification and osteoporosis. However, it remains unclear what effects dietary Pi has on α-klotho expression at different life stages, especially during growth periods. To investigate this, we used C57BL/6J mice in two life stages during growing period. Weaned (3 weeks old) and periadolescent (7 weeks old) were randomly divided into seven experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. As a result, elevated plasma Pi and FGF23 levels and decreased renal α-klotho expression were observed in weaned mice fed with a high Pi diet. In addition, a high Pi diet clearly induced renal calcification in the weaned mice. However, in the periadolescent group, renal calcification was not observed, even in the 1.8% Pi diet group. The present study indicates that a high Pi diet in weaned mice has much greater adverse effects on renal α-klotho expression and pathogenesis of renal calcification compared with periadolescent mice.


Asunto(s)
Dieta , Glucuronidasa/genética , Crecimiento y Desarrollo/efectos de los fármacos , Fosfatos/farmacología , Animales , Análisis Químico de la Sangre , Calcio/sangre , Calcio/orina , Factor-23 de Crecimiento de Fibroblastos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glucuronidasa/metabolismo , Crecimiento y Desarrollo/genética , Proteínas Klotho , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatos/sangre , Fosfatos/orina , Maduración Sexual/efectos de los fármacos , Maduración Sexual/fisiología , Urinálisis , Destete
17.
PLoS One ; 13(9): e0204229, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30248132

RESUMEN

Innate immune cells, such as macrophages, respond to pathogen-associated molecular patterns, such as a lipopolysaccharide (LPS), to secrete various inflammatory mediators. Recent studies have suggested that damage-associated molecular patterns (DAMPs), released extracellularly from damaged or immune cells, also play a role in the activation of inflammatory responses. In this study, to prevent excess inflammation, we focused on DAMPs-mediated signaling that promotes LPS-stimulated inflammatory responses, especially adenosine 5'-triphosphate (ATP)-triggered signaling through the ionotropic purinergic receptor 7 (P2X7R), as a potential new anti-inflammatory target of natural polyphenols. We focused on the phenomenon that ATP accelerates the production of inflammatory mediators, such as nitric oxide, in LPS-stimulated J774.1 mouse macrophages. Using an siRNA-mediated knockdown and specific antagonist, it was found that the ATP-induced enhanced inflammatory responses were mediated through P2X7R. We then screened 42 polyphenols for inhibiting the ATP/P2X7R-induced calcium influx, and found that several polyphenols exhibited significant inhibitory effects. Especially, a flavonoid baicalein significantly inhibited ATP-induced inflammation, including interleukin-1ß secretion, through inhibition of the ATP/P2X7R signaling. These findings suggest that ATP/P2X7R signaling plays an important role in excess inflammatory responses and could be a potential anti-inflammatory target of natural polyphenolic compounds.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antiinflamatorios/farmacología , Lipopolisacáridos/efectos adversos , Macrófagos/metabolismo , Polifenoles/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Productos Biológicos/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos , Flavanonas/farmacología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Receptores Purinérgicos P2X7/genética , Transducción de Señal/efectos de los fármacos
18.
Nat Commun ; 9(1): 942, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29507340

RESUMEN

Autophagy is the major cellular pathway by which macromolecules are degraded, and amino acid depletion powerfully activates autophagy. MAP4K3, or germinal-center kinase-like kinase, is required for robust cell growth in response to amino acids, but the basis for MAP4K3 regulation of cellular metabolic disposition remains unknown. Here we identify MAP4K3 as an amino acid-dependent regulator of autophagy through its phosphorylation of transcription factor EB (TFEB), a transcriptional activator of autophagy, and through amino acid starvation-dependent lysosomal localization of MAP4K3. We document that MAP4K3 physically interacts with TFEB and MAP4K3 inhibition is sufficient for TFEB nuclear localization, target gene transactivation, and autophagy, even when mTORC1 is activated. Moreover, MAP4K3 serine 3 phosphorylation of TFEB is required for TFEB interaction with mTORC1-Rag GTPase-Ragulator complex and TFEB cytosolic sequestration. Our results uncover a role for MAP4K3 in the control of autophagy and reveal MAP4K3 as a central node in nutrient-sensing regulation.


Asunto(s)
Aminoácidos/metabolismo , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Biológicos , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Transporte de Proteínas , Fracciones Subcelulares/metabolismo
19.
Sci Transl Med ; 9(419)2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29212711

RESUMEN

Neurons must maintain protein and mitochondrial quality control for optimal function, an energetically expensive process. The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that promote mitochondrial biogenesis and oxidative metabolism. We recently determined that transcriptional dysregulation of PPARδ contributes to Huntington's disease (HD), a progressive neurodegenerative disorder resulting from a CAG-polyglutamine repeat expansion in the huntingtin gene. We documented that the PPARδ agonist KD3010 is an effective therapy for HD in a mouse model. PPARδ forms a heterodimer with the retinoid X receptor (RXR), and RXR agonists are capable of promoting PPARδ activation. One compound with potent RXR agonist activity is the U.S. Food and Drug Administration-approved drug bexarotene. We tested the therapeutic potential of bexarotene in HD and found that bexarotene was neuroprotective in cellular models of HD, including medium spiny-like neurons generated from induced pluripotent stem cells (iPSCs) derived from patients with HD. To evaluate bexarotene as a treatment for HD, we treated the N171-82Q mouse model with the drug and found that bexarotene improved motor function, reduced neurodegeneration, and increased survival. To determine the basis for PPARδ neuroprotection, we evaluated metabolic function and noted markedly impaired oxidative metabolism in HD neurons, which was rescued by bexarotene or KD3010. We examined mitochondrial and protein quality control in cellular models of HD and observed that treatment with a PPARδ agonist promoted cellular quality control. By boosting cellular activities that are dysfunctional in HD, PPARδ activation may have therapeutic applications in HD and potentially other neurodegenerative diseases.


Asunto(s)
PPAR delta/agonistas , PPAR delta/metabolismo , Tetrahidronaftalenos/farmacología , Animales , Bexaroteno , Regulación de la Expresión Génica , Homeostasis/efectos de los fármacos , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
20.
PLoS One ; 11(8): e0161282, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536885

RESUMEN

Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs) in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1) plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1ß. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.


Asunto(s)
Antiinflamatorios/farmacología , Proteínas de Unión al ADN/fisiología , Agregación Patológica de Proteínas/inducido químicamente , Sesquiterpenos/farmacología , Factores de Transcripción/fisiología , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Proteínas del Choque Térmico HSP72/metabolismo , Factores de Transcripción del Choque Térmico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Agregación Patológica de Proteínas/fisiopatología , Células RAW 264.7/efectos de los fármacos , Células RAW 264.7/fisiología , Interferencia de ARN/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA