Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Psychol ; 14: 1161533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546462

RESUMEN

Previous research finds that natural environments and exercise enhance creativity. In this within-subjects design study, we examined the influence of outdoor exercise that combined a natural environment with exercise on creativity compared to an indoor exercise control condition by analyzing cognitive activities related to creativity. The participants performed an Alternative Uses Test (AUT), in which ordinary objects are presented to the participants (e.g., a brick), to prompt as many ideas for alternative uses as possible, which are transformed into a creativity score, after indoor running and outdoor running. During the test, brain activity was recorded using electroencephalography (EEG) and a short version flow state scale (FSS) was completed after the experiment. Results showed that while AUT scores did not significantly differ between conditions, alpha band activity at the parietal occipital region involved in divergent creativity increased during the AUT after outdoor exercise while it did not during the AUT after indoor exercise. In addition, FSS scores for positive emotional experience and absorption were higher after outdoor exercise than after indoor exercise. Our results from the FSS suggest that exercise in a natural environment is perceived subjectively differently from indoor exercise, participants report greater experiences of flow compared to indoor exercise, and the EEG measures objectively indicate enhanced cognitive activity in a creativity task after outdoor exercise. This study suggests that outdoor exercise increases neuronal activity in brain regions related to creativity. Further research is needed to understand how this can lead to increased creativity.

2.
Phys Act Nutr ; 26(1): 8-13, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35510440

RESUMEN

PURPOSE: The present study compared energy metabolism between walking and running at equivalent speeds during two incremental exercise tests. METHODS: Thirty four university students (18 males, 16 females) were recruited. Each participant completed two trials, consisting of walking (Walk) and running (Run) trials on different days, with 2-3 days apart. Exercise on a treadmill was started from initial stage of 3 min (3.0 k/m in Walk trial, 5.0 km/h in Run trial), and the speed for walking and running was progressively every minute by 0.5 km/h. The changes in metabolic variables, heart rate (HR), and rating of perceived exertion (RPE) during exercise were compared between the trials. RESULTS: Energy expenditure (EE) increased with speed in each trial. However, the Walk trial had a significantly higher EE than the Run trial at speeds exceeding 92 ± 2 % of the maximal walking speed (MWS, p < 0.01). Similarly, carbohydrate (CHO) oxidation was significantly higher in the Walk trial than in the Run trial at above 92 ± 2 %MWS in males (p < 0.001) and above 93 ± 1 %MWS in females (p < 0.05). CONCLUSION: These findings suggest that EE and CHO oxidation during walking increase non-linearly with speed, and walking at a fast speed causes greater metabolic responses than running at the equivalent speed in young participants.

3.
Front Sports Act Living ; 4: 1055302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36873909

RESUMEN

Background: Physically active status is an important contributor to individual health. Walking is regarded as commonly accepted exercise for exercise promotion. Particularly, interval fast walking (FW), consisting of alternating between fast and slow walking speeds, has gained popularity from practical viewpoints. Although previous studies have determined the short- and long-term effects of FW programs on endurance capacity and cardiovascular variables, factors affecting these outcomes have not been clarified. In addition to physiological variables, understanding of mechanical variables and muscle activity during FW would be a help to understand characteristics of FW. In the present study, we compared the ground reaction force (GRF) and lower limb muscle activity between fast walking (FW) and running at equivalent speeds. Method: Eight healthy men performed slow walking (45% of the maximum walking speed; SW, 3.9 ± 0.2 km/h), FW (85% of the maximum walking speed, 7.4 ± 0.4 km/h), and running at equivalent speeds (Run) for 4 min each. GRF and average muscle activity (aEMG) were evaluated during the contact, braking, and propulsive phases. Muscle activities were determined for seven lower limb muscles: gluteus maximus (GM), biceps femoris (BF), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medialis (MG), soleus (SOL), and tibialis anterior (TA). Results: The anteroposterior GRF was greater in FW than in Run during the propulsive phase (p < 0.001), whereas the impact load (peak and average vertical GRF) was lower in FW than in Run (p < 0.001). In the braking phase, lower leg muscle aEMGs were higher during Run than during SW and FW (p < 0.001). However, in the propulsive phase, soleus muscle activity was greater during FW than during Run (p < 0.001). aEMG of tibialis anterior was higher during FW than during SW and Run in the contact phase (p < 0.001). No significant difference between FW and Run was observed for HR and RPE. Conclusion: These results suggest that the average muscle activities of lower limbs (e.g., gluteus maximus, rectus femoris, and soleus) during the contact phase were comparable between FW and running, however, the activity patterns of lower limb muscles differed between FW and running, even at equivalent speeds. During running, muscles were mainly activated in the braking phase related to impact. In contrast, during FW, soleus muscle activity during the propulsive phase was increased. Although cardiopulmonary response was not different between FW and running, exercise using FW might be useful for health promotion among individuals who cannot exercise at high-intensity.

5.
Food Chem ; 175: 66-73, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25577052

RESUMEN

Human dipeptidyl peptidase IV (hDPPIV) inhibitors provide an effective strategy for the treatment of type 2 diabetes. Because certain peptides are known to act as hDPPIV inhibitors, a dataset of possible peptides with their inhibition intensities will facilitate the development of functional food for type 2 diabetes. In this study, we examined a total of 337 dipeptides with respect to their hDPPIV inhibitory effects. Amino acid residues at N-termini dominated their inhibition intensities. Particularly highly inhibitory dipeptides discovered included the following novel dipeptides: Thr-His, Asn-His, Val-Leu, Met-Leu, and Met-Met. Using our dataset, prime candidates contributing to the hDPPIV inhibitory effect of soy protein hydrolyzates were successfully identified. Possible dietary proteins potentially able to produce particularly highly hDPPIV inhibitory peptides are also discussed on the basis of the dataset.


Asunto(s)
Dipéptidos/química , Dipéptidos/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Secuencia de Aminoácidos , Animales , Proteínas en la Dieta/análisis , Proteínas en la Dieta/química , Dipéptidos/análisis , Inhibidores de la Dipeptidil-Peptidasa IV/análisis , Humanos , Datos de Secuencia Molecular , Biblioteca de Péptidos , Proteínas de Soja/análisis , Proteínas de Soja/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...