Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 21(4)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38925109

RESUMEN

Objective: Current neuronal imaging methods mostly use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers.Approach: Our developed 'CIS-NAIST' device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus and employed machine learning techniques for seizure classification and prediction.Main results: The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we successfully classified seizure calcium activity and predicted seizure behavior using Long Short-Term Memory and Hidden Markov models.Significance: Taken together, our 'CIS-NAIST' device offers an effective and minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.


Asunto(s)
Calcio , Hipocampo , Convulsiones , Animales , Hipocampo/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Calcio/metabolismo , Masculino , Agujas , Ratas , Semiconductores
2.
Biochem Biophys Res Commun ; 708: 149800, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38522402

RESUMEN

Previous human and rodent studies indicated that nociceptive stimuli activate many brain regions that is involved in the somatosensory and emotional sensation. Although these studies have identified several important brain regions involved in pain perception, it has been a challenge to observe neural activity directly and simultaneously in these multiple brain regions during pain perception. Using a transgenic mouse expressing G-CaMP7 in majority of astrocytes and a subpopulation of excitatory neurons, we recorded the brain activity in the mouse cerebral cortex during acute pain stimulation. Both of hind paw pinch and intraplantar administration of formalin caused strong transient increase of the fluorescence in several cortical regions, including primary somatosensory, motor and retrosplenial cortex. This increase of the fluorescence intensity was attenuated by the pretreatment with morphine. The present study provides important insight into the cortico-cortical network during pain perception.


Asunto(s)
Dolor Agudo , Animales , Ratones , Humanos , Corteza Somatosensorial , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Giro del Cíngulo , Diagnóstico por Imagen
3.
Science ; 383(6678): 55-61, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38175903

RESUMEN

Decision-making is always coupled with some level of risk, with more pathological forms of risk-taking decisions manifesting as gambling disorders. In macaque monkeys trained in a high risk-high return (HH) versus low risk-low return (LL) choice task, we found that the reversible pharmacological inactivation of ventral Brodmann area 6 (area 6V) impaired the risk dependency of decision-making. Selective optogenetic activation of the mesofrontal pathway from the ventral tegmental area (VTA) to the ventral aspect of 6V resulted in stronger preference for HH, whereas activation of the pathway from the VTA to the dorsal aspect of 6V led to LL preference. Finally, computational decoding captured the modulations of behavioral preference. Our results suggest that VTA inputs to area 6V determine the decision balance between HH and LL.


Asunto(s)
Asunción de Riesgos , Área Tegmental Ventral , Animales , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología , Macaca fuscata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA