Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(20): e202319503, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478726

RESUMEN

Graphene, a transparent two-dimensional conductive material, has brought extensive new perspectives and prospects to various aqueous technological systems, such as desalination membranes, chemical sensors, energy storage, and energy conversion devices. Yet, the molecular-level details of graphene in contact with aqueous electrolytes, such as water orientation and hydrogen bond structure, remain elusive or controversial. Here, we employ surface-specific heterodyne-detected sum-frequency generation (HD-SFG) vibrational spectroscopy to re-examine the water molecular structure at a freely suspended graphene/water interface. We compare the response from the air/graphene/water system to that from the air/water interface. Our results indicate that the χ y y z 2 ${{\chi }_{yyz}^{\left(2\right)}}$ spectrum recorded from the air/graphene/water system arises from the topmost 1-2 water layers in contact with the graphene, with the graphene itself not generating a significant SFG response. Compared to the air/water interface response, the presence of monolayer graphene weakly affects the interfacial water. Graphene weakly affects the dangling O-H group, lowering its frequency through its interaction with the graphene sheet, and has a very small effect on the hydrogen-bonded O-H group. Molecular dynamics simulations confirm our experimental observation. Our work provides molecular insight into the interfacial structure at a suspended graphene/water interface, relevant to various technological applications of graphene.

2.
J Am Chem Soc ; 146(7): 4922-4929, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324711

RESUMEN

The study of molecular wires facilitating long-range charge transport is of fundamental interest for the development of various technologies in (bio)organic and molecular electronics. Defining the nature of long-range charge transport is challenging as electrical characterization does not offer the ability to distinguish a tunneling mechanism from the other. Here, we show that investigation of the Seebeck effect provides the ability. We examine the length dependence of the Seebeck coefficient in electrografted bis-terpyridine Ru(II) complex films. The Seebeck coefficient ranges from 307 to 1027 µV/K, with an increasing rate of 95.7 µV/(K nm) as the film thickness increases to 10 nm. Quantum-chemical calculations unveil that the nearly overlapped molecular-orbital energy level of the Ru complex with the Fermi level accounts for the giant thermopower. Landauer-Büttiker probe simulations indicate that the significant length dependence evinces the Seebeck effect dominated by coherent near-resonant tunneling rather than thermal hopping. This study enhances our comprehension of long-range charge transport, paving the way for efficient electronic and thermoelectric materials.

3.
Nanoscale Adv ; 6(4): 1091-1105, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38356617

RESUMEN

Combining interfacial interactions and layer-number tunability, the evolution of magnetism in low-dimensional diamagnetic systems like MoS2 is indeed an interesting area of research. To explore this, Ni nanophases with an average size of 12 nm were encapsulated in MoS2 and the magnetization dynamics were studied over the temperature range of 2-300 K. Surprisingly, the newly formed hybrid nanostructure was found to have a negative magnetization state with giant exchange bias that showed a reversible temperature-induced increase in both spin magnetic moment and coercivity. Density functional theory calculations proved an interfacial charge transfer interaction with a spin-polarized density of states. The magnetization state, along with giant exchange correlation among the magnetic clusters, suggested the possibility of robust thermomagnetic memory. The dc magnetization and relaxation, investigated with different measurement protocols, unveiled robust thermoremanent magnetization as a memory effect. The time-dependent magnetization study indicated that contributions from the negative magnetization state along with charge transfer induced spin states are responsible for the memory effect, which can be controlled by both temperature and external field.

4.
Small ; 20(5): e2305997, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726226

RESUMEN

Functionality in molecular electronics relies on inclusion of molecular orbital energy level within a transmission window. This can be achieved by designing the active molecule with accessible energy levels or by widening the window. While many studies have adopted the first approach, the latter is challenging because defects in the active molecular component cause low breakdown voltages. Here, it is shown that control over the packing structure of monolayer via supramolecular mixing transforms an inert molecule into a highly tunable rectifier. Binary mixed monolayer composed of alkanethiolates with and without carboxylic acid head group as a proof of concept is formed via a surface-exchange reaction. The monolayer withstands high voltages up to |4.5 V| and shows a dynamic rectification-external bias relationship in magnitude and polarity. Sub-highest occupied molecular orbital (HOMO) levels activated by the widened transmission window account for these observations. This work demonstrates that simple supramolecular mixing can imbue new electrical properties in electro-inactive organic molecules.

5.
Adv Sci (Weinh) ; 10(31): e2304082, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37688335

RESUMEN

Proton exchange membranes with high proton conductivity and low crossover of fuel molecules are required to realize advanced fuel-cell technology. The selective transportation of protons, which occurs by blocking the transportation of fuel molecules across a proton exchange membrane, is crucial to suppress crossover while maintaining a high proton conductivity. In this study, a simple yet powerful method is proposed for optimizing the crossover-conductivity relationship by pasting sulfanilic-functionalized holey graphenes onto a Nafion membrane. The results show that the sulfanilic-functionalized holey graphenes supported by the membrane suppresses the crossover by 89% in methanol and 80% in formate compared with that in the self-assembled Nafion membrane; an ≈60% reduction is observed in the proton conductivity. This method exhibits the potential for application in advanced fuel cells that use methanol and formic acid as chemical fuels to achieve high energy efficiency.

6.
J Am Chem Soc ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780241

RESUMEN

We report in situ generation of a 6,6'-biindeno[1,2-b]anthracene (BIA) derivative as an open-shell biaryl with high diradical character, which could be identified by mass spectrometry, NMR spectroscopy, single-crystal X-ray analysis, UV-vis-NIR absorption spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. Theoretical calculations by various methods and variable-temperature EPR analyses were performed to tackle the elusive ground state of BIA diradical, suggesting a singlet ground state with a nearly degenerate triplet state. These results provide insight into the design of unique open-shell biaryls.

7.
Adv Mater ; 35(3): e2207466, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271728

RESUMEN

To realize a sustainable hydrogen economy, corrosion-resistant non-noble-metal catalysts are needed to replace noble-metal-based catalysts. The combination of passivation elements and catalytically active elements is crucial for simultaneously achieving high corrosion resistance and high catalytic activity. Herein, the self-selection/reconstruction characteristics of multi-element (nonary) alloys that can automatically redistribute suitable elements and rearrange surface structures under the target reaction conditions during the oxygen evolution reaction are investigated. The following synergetic effect (i.e., cocktail effect), among the elements Ti, Zr, Nb, and Mo, significantly contributes to passivation, whereas Cr, Co, Ni, Mn, and Fe enhance the catalytic activity. According to the practical water electrolysis experiments, the self-selected/reconstructed multi-element alloy demonstrates high performance under a similar condition with proton exchange membrane (PEM)-type water electrolysis without obvious degradation during stability tests. This verifies the resistance of the alloy to corrosion when used as an electrode under a practical PEM electrolysis condition.

8.
Adv Mater ; 34(51): e2205986, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36208073

RESUMEN

Nitrogen (N) doping is one of the most effective approaches to tailor the chemical and physical properties of graphene. By the interplay between N dopants and 3D curvature of graphene lattices, N-doped 3D graphene displays superior performance in electrocatalysis and solar-energy harvesting for energy and environmental applications. However, the electrical transport properties and the electronic states, which are the key factors to understand the origins of the N-doping effect in 3D graphene, are still missing. The electronic properties of N-doped 3D graphene are systematically investigated by an electric-double-layer transistor method. It is demonstrated that Urbach-tail-like localized states are located around the neutral point of N-doped 3D graphene with the background metallic transport channels. The dual nature of electronic states, generated by the synergistic effect of N dopants and 3D curvature of graphene, can be the electronic origin of the high electrocatalysis, enhanced molecular adsorption, and light absorption of N-doped 3D graphene.

9.
Nano Lett ; 22(18): 7682-7689, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36067367

RESUMEN

The Seebeck effect of a molecular junction in a hopping regime or tunneling-to-hopping transition remains uncertain. This paper describes the Seebeck effect in molecular epitaxy films (OPIn where n = 1-9) based on imine condensation between an aryl amine and aldehyde and investigates how the Seebeck coefficient (S, µV/K) varies at the crossover region. The S value of OPIn linearly increased with increasing the molecular length (d, nm), ranging from 7.2 to 38.0 µV/K. The increasing rate changed from 0.99 to 0.38 µV·K-1 Å-1 at d = 3.4 nm (OPI4). Combined experimental and theoretical studies indicated that such a change stems from a tunneling-to-hopping transition, and the small but detectable length-dependence of thermopower in the long molecules originates from the gradual reduction of the tunneling contribution to the broadening of molecular orbital energy level, rather than its relative position to the Fermi level. Our work helps to bridge the gap between bulk and nanoscale thermoelectric systems.


Asunto(s)
Iminas , Modelos Teóricos , Aldehídos , Aminas
10.
Proc Natl Acad Sci U S A ; 119(36): e2204156119, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037357

RESUMEN

The dielectric properties of interfacial water on subnanometer length scales govern chemical reactions, carrier transfer, and ion transport at interfaces. Yet, the nature of the interfacial dielectric function has remained under debate as it is challenging to access the interfacial dielectric with subnanometer resolution. Here we use the vibrational response of interfacial water molecules probed using surface-specific sum-frequency generation (SFG) spectra to obtain exquisite depth resolution. Different responses originate from water molecules at different depths and report back on the local interfacial dielectric environment via their spectral amplitudes. From experimental and simulated SFG spectra at the air/water interface, we find that the interfacial dielectric constant changes drastically across an ∼1 Šthin interfacial water region. The strong gradient of the interfacial dielectric constant leads, at charged planar interfaces, to the formation of an electric triple layer that goes beyond the standard double-layer model.

11.
Chemistry ; 28(58): e202202243, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35880725

RESUMEN

We present here the synthesis and in-depth physicochemical characterization of a double hetero[7]helicene fused with four triazole rings at both helical ends. The comparison of this triazole-fused double helicene with the previously reported all-carbon and thiadiazole-fused analogs revealed the huge impact of the embedded aromatic rings on the photophysical features. The small structural variation of the terminal rings from thiadiazole to triazole caused a dramatic change of the photoluminescence quantum yields (PLQYs) from <1 % to 96 %, while the replacement of the terminal benzene rings with triazole rings induced a tenfold enhancement of the circularly polarized luminescence dissymmetry factor. These observations were well corroborated with transient absorption analysis and/or theoretic calculations. In addition, the triazole-fused double helicene exhibited ambipolar redox behavior, enabling the generation of radical cation and anion species by electrochemical and chemical methods and showing its potential for spin-related applications.

12.
Chem Sci ; 12(32): 10871-10877, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34476066

RESUMEN

Control of charge carriers that transport through the molecular junctions is essential for thermoelectric materials. In general, the charge carrier depends on the dominant conduction orbitals and is dominantly determined by the terminal anchor groups. The present study discloses the synthesis, physical properties in solution, and single-molecule conductance of paddle-wheel diruthenium complexes 1R having diarylformamidinato supporting ligands (DArF: p-R-C6H4-NCHN-C6H4-R-p) and two axial thioanisylethynyl conducting anchor groups, revealing unique substituent effects with respect to the conduction orbitals. The complexes 1R with a few different aryl substituents (R = OMe, H, Cl, and CF3) were fully characterized by spectroscopic and crystallographic analyses. The single-molecule conductance determined by the scanning tunneling microscope break junction (STM-BJ) technique was in the 10-5 to 10-4 G 0 region, and the order of conductance was 1OMe > 1CF3 ≫ 1H ∼ 1Cl, which was not consistent with the Hammett substituent constants σ of R. Cyclic voltammetry revealed the narrow HOMO-LUMO gaps of 1R originating from the diruthenium motif, as further supported by the DFT study. The DFT-NEGF analysis of this unique result revealed that the dominant conductance routes changed from HOMO conductance (for 1OMe) to LUMO conductance (for 1CF3). The drastic change in the conductance properties originates from the intrinsic narrow HOMO-LUMO gaps.

13.
Nat Commun ; 12(1): 203, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420063

RESUMEN

Graphene-covering is a promising approach for achieving an acid-stable, non-noble-metal-catalysed hydrogen evolution reaction (HER). Optimization of the number of graphene-covering layers and the density of defects generated by chemical doping is crucial for achieving a balance between corrosion resistance and catalytic activity. Here, we investigate the influence of charge transfer and proton penetration through the graphene layers on the HER mechanisms of the non-noble metals Ni and Cu in an acidic electrolyte. We find that increasing the number of graphene-covering layers significantly alters the HER performances of Ni and Cu. The proton penetration explored through electrochemical experiments and simulations reveals that the HER activity of the graphene-covered catalysts is governed by the degree of proton penetration, as determined by the number of graphene-covering layers.

14.
Small ; 17(3): e2006709, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33338317

RESUMEN

Direct hybridization between the π-orbital of a conjugated molecule and metal electrodes is recognized as a new anchoring strategy to enhance the electrical conductance of single-molecule junctions. The anchor is expected to maintain direct hybridization between the conjugated molecule and the metal electrodes, and control the orientation of the molecule against the metal electrodes. However, fulfilling both requirements is difficult because multipodal anchors aiming at a robust contact with the electrodes often break the π-conjugation, thereby resulting in an inefficient carrier transport. Herein, a new tripodal anchor framework-a 7,7-diphenyl-7H-benzo[6,7]indeno[1,2-b]thiophene (PBIT) derivative-is developed. In this framework, π-conjugation is maintained in the molecular junction, and the tripodal structure makes the molecule stand upright on the metal electrode. Molecular conductance is measured by the break junction technique. A vector-based classification and first-principles transport calculations determine the single-molecule conductance of the tripodal-anchoring structure. The conductance of the PBIT-based molecule is higher than that of the tripodal anchor having sp3 carbon atoms in the carrier transport pathway. These results demonstrate that extending the π-conjugation to the tripodal leg is an effective strategy for enhancing the conductivities of single-molecule junctions.

15.
J Am Chem Soc ; 143(2): 599-603, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33350820

RESUMEN

The development of several-nanometer-scale π-conjugated systems for efficient intramolecular hopping charge transport remains a significant challenge. To construct localized electronic structures at the same energy in a molecule, a series of oligothiophenes, with lengths up to 10 nm and periodically twisted structures, was synthesized. Single-molecule conductance measurements of the twisted molecules revealed resistances lower than those of planar oligothiophenes. This study provides a rational molecular design to improve the intramolecular hopping charge transport in materials.

16.
Nat Commun ; 11(1): 5977, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239630

RESUMEN

Coupling between vibrational modes is essential for energy transfer and dissipation in condensed matter. For water, different O-H stretch modes are known to be very strongly coupled both within and between water molecules, leading to ultrafast dissipation and delocalization of vibrational energy. In contrast, the information on the vibrational coupling of the H-O-H bending mode of water is lacking, even though the bending mode is an essential intermediate for the energy relaxation pathway from the stretch mode to the heat bath. By combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopies for isotopically diluted water with ab initio molecular dynamics simulations, we find the vibrational coupling of the bending mode differs significantly from the stretch mode: the intramode intermolecular coupling of the bending mode is very weak, in stark contrast to the stretch mode. Our results elucidate the vibrational energy transfer pathways of water. Specifically, the librational motion is essential for the vibrational energy relaxation and orientational dynamics of H-O-H bending mode.

17.
Phys Chem Chem Phys ; 22(19): 10934-10940, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32373844

RESUMEN

The structure of interfacial water determines atmospheric chemistry, wetting properties of materials, and protein folding. The challenge of investigating the properties of specific interfacial water molecules has frequently been confronted using surface-specific sum-frequency generation (SFG) vibrational spectroscopy using the O-H stretch mode. While perfectly suited for the water-air interface, for complex interfaces, a potential complication arises from the contribution of hydroxyl or amine groups of non-water species present at the surface, such as surface hydroxyls on minerals, or O-H and N-H groups contained in proteins. Here, we present a protocol to extract the hydrogen bond strength selectively of interfacial water, through the water bending mode. The bending mode vibrational frequency distribution provides a new avenue for unveiling the hydrogen bonding structure of interfacial water at complex aqueous interfaces. We demonstrate this method for the water-CaF2 and water-protein interfaces. For the former, we show that this method can indeed single out water O-H groups from surface hydroxyls, and that with increasing pH, the hydrogen-bonded network of interfacial water strengthens. Furthermore, we unveil enhanced hydrogen bonding of water, compared to bulk water, at the interface with human serum albumin proteins, a prototypical bio-interface.


Asunto(s)
Agua/química , Fluoruro de Calcio/química , Deuterio/química , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Albúmina Sérica Humana/química , Análisis Espectral/métodos , Propiedades de Superficie , Vibración
18.
Phys Chem Chem Phys ; 22(22): 12785-12793, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32467958

RESUMEN

The frequencies and spectral lineshapes of the stretch and bending modes of water provide invaluable information on the microscopic structures of water in aqueous solutions and at the water/solid interfaces. Density functional theory molecular dynamics (DFT-MD) simulation has been used not only for predicting the properties of water but also for interpreting the vibrational spectra of water. Since the accuracy of the DFT-MD simulations relies on the choice of the exchange-correlation functionals and dispersion correction schemes employed, the predicted vibrational spectra at different levels of DFT theory differ significantly, prohibiting precise comparison of simulated spectra with experimental data. Here, we simulate the vibrational density of states for liquid heavy water based on various DFT-MD trajectories. We find that DFT-MD simulations tend to predict excessive inhomogeneous broadening for the stretch mode of water. Furthermore, we develop a frequency correction scheme for the stretch and bending modes of liquid water, which substantially improves the prediction of the vibrational spectra.

19.
Chem Rev ; 120(8): 3633-3667, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32141737

RESUMEN

From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.

20.
Nanoscale ; 12(14): 7527-7531, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32219263

RESUMEN

The electrical properties of a single-molecule junction of spiropyran are investigated through the break junction (BJ) method, and the current-voltage (I-V) characteristics are switched from rectified to symmetric through mechanical stimulus. This phenomenon indicates isomerization from spiropyran to merocyanine. In addition, an increase in the conductance associated with isomerization is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...