Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 5(4): 3132-40, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21443250

RESUMEN

In this study, we demonstrate how the vertical morphology of bulk heterojunction solar cells, with an active layer consisting of self-assembled poly(3-hexylthiophene) (P3HT) nanowires and phenyl-C(61)-butyric acid methyl ester (PCBM), can be beneficially influenced. Most device fabrication routes using similar materials employ an annealing step to influence active layer morphology, but this process can create an unfavorable phase migration where P3HT is driven toward the top of the active layer. In contrast, we demonstrate devices that exhibit an increase in relative fullerene concentration at the top of the active layer by introducing the donor phase as a solid nanowire in the active layer solution and altering the pre-spin drying time. X-ray photoelectron spectroscopy and conductive and photoconductive atomic force microscopy provide detailed images of how the surface of the active layer can be influenced; this is done by tracking the concentration and alignment of P3HT and PCBM domains. Using this new procedure, devices are made with power conversion efficiencies surpassing 2%. Additionally, we show that nanowires grown in the presence of the fullerene perform differently than those that are grown and mixed separately; exposure to the nanowire during self-assembly may allow the fullerene to coat nanowire surfaces and influence the photocurrent within the device.

2.
ACS Appl Mater Interfaces ; 2(2): 511-20, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20356199

RESUMEN

In this paper, we report on n-alkyl phosphonic acid (PA) self-assembled monolayer (SAM)/hafnium oxide (HfO(2)) hybrid dielectrics utilizing the advantages of SAMs for control over the dielectric/semiconductor interface with those of high-k metal oxides for low-voltage organic thin film transistors (OTFTs). By systematically varying the number of carbon atoms of the n-alkyl PA SAM from six to eighteen on HfO(2) with stable and low leakage current density, we observe how the structural nature of the SAM affects the thin-film crystal structure and morphology, and subsequent device performance of low-voltage pentacene based OTFTs. We find that two primary structural factors of the SAM play a critical role in optimizing the device electrical characteristics, namely, the order/disorder of the SAM and its physical thickness. High saturation-field-effect mobilities result at a balance between disordered SAMs to promote large pentacene grains and thick SAMs to aid in physically buffering the charge carriers in pentacene from the adverse effects of the underlying high-k oxide. Employing the appropriate n-alkyl PA SAM/HfO(2) hybrid dielectrics, pentacene-based OTFTs operate under -2.0 V with low hysteresis, on-off current ratios above 1 x 10(6), threshold voltages below -0.6 V, subthreshold slopes as low as 100 mV dec(-1), and field-effect mobilities as high as 1.8 cm(2) V(-1) s(-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA