Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Chem Commun (Camb) ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115107

RESUMEN

We designed and synthesized an N-ortho-nitrobenzylated benzanilide-based amino acid having a cis-amide structure that facilitates cyclization of peptides containing it. Photo-induced removal of the nitrobenzyl group from this residue in the resulting cyclized peptides dramatically alters their conformation and passive membrane permeability via complete cis-amide to trans-amide conversion.

2.
Chem Commun (Camb) ; 60(48): 6158-6161, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38804552

RESUMEN

A typical naturally occurring disulfide structure in proteins is an 8-membered disulfide ring formed between two adjacent cysteine (Cys-Cys) residues. Based on this structure, we designed 7- to 9-membered disulfide ring molecules, embedded in the 7-azabicyclo[2.2.1]heptane skeleton, that switch their conformation from exclusively trans-amide to exclusively cis-amide upon redox transformation from dithiol to disulfide, and vice versa. Constrained shape of disulfide rings is rare in nature, and the present molecular structure is expected to be a useful fundamental component for the construction of new conformation-switching systems.

3.
Nat Commun ; 15(1): 902, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326347

RESUMEN

GPR34 is a recently identified G-protein coupled receptor, which has an immunomodulatory role and recognizes lysophosphatidylserine (LysoPS) as a putative ligand. Here, we report cryo-electron microscopy structures of human GPR34-Gi complex bound with one of two ligands bound: either the LysoPS analogue S3E-LysoPS, or M1, a derivative of S3E-LysoPS in which oleic acid is substituted with a metabolically stable aromatic fatty acid surrogate. The ligand-binding pocket is laterally open toward the membrane, allowing lateral entry of lipidic agonists into the cavity. The amine and carboxylate groups of the serine moiety are recognized by the charged residue cluster. The acyl chain of S3E-LysoPS is bent and fits into the L-shaped hydrophobic pocket in TM4-5 gap, and the aromatic fatty acid surrogate of M1 fits more appropriately. Molecular dynamics simulations further account for the LysoPS-regioselectivity of GPR34. Thus, using a series of structural and physiological experiments, we provide evidence that chemically unstable 2-acyl LysoPS is the physiological ligand for GPR34. Overall, we anticipate the present structures will pave the way for development of novel anticancer drugs that specifically target GPR34.


Asunto(s)
Ácidos Grasos , Lisofosfolípidos , Humanos , Microscopía por Crioelectrón , Ácidos Grasos/metabolismo , Ligandos , Lisofosfolípidos/metabolismo , Receptores Lisofosfolípidos/agonistas , Receptores Lisofosfolípidos/metabolismo
4.
Bioorg Chem ; 145: 107220, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387401

RESUMEN

In this study, we explored the potential of the photoremovable o-nitrobenzyl (oNB) group as a tool to manipulate the membrane permeability and regulate the conformation of linear peptides by means of experimental and computational studies. We found that the introduction of one or more oNB groups markedly increased the permeability and altered the conformation, as compared to the corresponding unmodified peptides. We thoroughly investigated the impact of peptide length, number of oNB group, oNB insertion position, and introduction of N- and C-terminal protecting groups on the passive membrane permeability by means of parallel artificial membrane permeability assay (PAMPA). Photoreaction of peptides containing one or two oNB groups proceeded cleanly in moderate to high yields, releasing the unprotected parent linear peptide. The oNB-modified peptides showed a cis/trans conformational equilibrium, while after photolysis, the unprotected linear peptides showed only the trans-amide conformation. Furthermore, a comprehensive comparison of oNB-modified peptides and N-methylated peptides was conducted, encompassing conformational analysis and physicochemical properties. N-Substituted peptides favored a folded-like structure, which may contribute to the improvement in permeability.


Asunto(s)
Membranas Artificiales , Péptidos , Péptidos/química , Permeabilidad de la Membrana Celular , Conformación Molecular , Permeabilidad
5.
Chemistry ; 30(5): e202303393, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37984364

RESUMEN

Here we show that the sp-hybridized nitrogen cation is strongly stabilized by a peri-iodine substituent in the tetralone system. The cation is captured by anionic species such as CF3 CO2 - , affording hypervalent iodine(III) compounds with a short nitrogen-iodine (N-I) bond, in which the cation serves as a Lewis acid. Notably, the O-I bond of the O-trifluoroacetate or O-acetate is intrinsically weaker than the N-I bond due to its more ionic character and is further weakened by protonation in trifluoroacetic acid. As a result, the oxygen ligand can dissociate in the presence of a Brønsted acid, affording a I+ cation intermediate that retains the N-I bond. We isolated the cation as the tetrafluoroborate, and characterized it experimentally by 1 H NMR spectroscopy and X-ray structure analysis, and theoretically by means of DFT calculation. The results suggest that the N-I bonded cation is intrinsically stable, and is weakly coordinated with water and the BF4 counter anion or trifluoroacetate anion. This cation can be employed as a reagent for α-oxidation of ketones.

6.
Chem Pharm Bull (Tokyo) ; 71(7): 584-615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37394607

RESUMEN

Our group has reported various derivatives of lysophosphatidylserine (LysoPS) as potent and subtype-selective agonists for G-protein-coupled receptors (GPCRs). However, the ester linkage between the glycerol moiety and fatty acid or fatty acid surrogate is present in all of them. In order to develop these LysoPS analogs as drug candidates, appropriate pharmacokinetic consideration is essential. Here, we found that the ester bond of LysoPS is highly susceptible to metabolic degradation in mouse blood. Accordingly, we examined isosteric replacement of the ester linkage with heteroaromatic rings. The resulting compounds showed excellent retention of potency and receptor subtype selectivity, as well as increased metabolic stability in vitro.


Asunto(s)
Lisofosfolípidos , Receptores Acoplados a Proteínas G , Ratones , Animales , Receptores Lisofosfolípidos/agonistas , Receptores Lisofosfolípidos/metabolismo , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Ácidos Grasos/metabolismo , Glicerol/química
8.
Org Lett ; 25(19): 3482-3486, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37158431

RESUMEN

Fluorination of oximes with the relatively mild diethylaminosulfur trifluoride/tetrahydrofuran (DAST-THF) system affords imidoyl fluorides. These compounds were isolated, and their structures were confirmed by X-ray single-crystal structure analysis. Reaction of imidoyl fluorides with various nucleophiles efficiently afforded amides, amidines, thioamides, and amine derivatives in high yields. Furthermore, one-pot reaction of in situ generated imidoyl fluorides from oximes was also applicable to efficient synthesis of these products. The oxime stereochemistry and acid-labile protecting group remained intact in this system.

9.
Yakugaku Zasshi ; 143(4): 323-336, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-37005231

RESUMEN

In this review, the authors review and explain their research on "Discovery of Bonding Active Species Containing Nitrogen Atoms" from the past to the present. The authors are interested in new chemical phenomena, especially in the activation of chemical bonds containing nitrogen atoms, and have conducted research to discover chemical bonds with new properties. The activated chemical bonds containing nitrogen atoms are the following (Fig. 1). (1) Rotationally activated C-N bonds by pyramidalization of amide nitrogen atoms (2) N-N bond cleavage ability with reduced bond strength by pyramidalization of nitrosamine nitrogen atoms (3) Transient hetero atom-N bond formation by neighboring group participation of a halogen electron to the nitrogen cation. (4) A unique carbon cation reaction involving nitrogen atoms, especially nitro groups (C-NO2 bond) and ammonium ions (C-NH3+ bond). These purely basic chemistry discoveries unexpectedly led to the creation of functional materials, especially biologically active molecules. We will explain how new chemical bonds led to the creation of new functions.


Asunto(s)
Halógenos , Nitrógeno , Nitrógeno/química , Fenómenos Químicos , Halógenos/química , Cationes , Amidas
10.
Eur J Med Chem ; 252: 115271, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965226

RESUMEN

Lysophosphatidylserine (LysoPS) is an endogenous pan-agonist of three G-protein coupled receptors (GPCRs): LPS1/GPR34, LPS2/P2Y10, and LPS3/GPR174, and we previously reported a series of LysoPS-based agonists of these receptors. Interestingly, we found that LPS1 agonist activity was very sensitive to structural change at the hydrophobic fatty acid moiety, whereas LPS2 agonist activity was not. Here, to probe the molecular basis of LPS2 agonist binding, we developed a new class of hydrophobic fatty acid surrogates having a biphenyl-ether scaffold. The LPS2 agonist activity of these compounds proved sensitive to molecular modification of the hydrophobic skeleton. Thus, we next constructed an LPS2 model by homology modeling and docking/molecular dynamics (MD) simulation, and validated it by means of SAR studies together with point mutations of selected receptor amino-acid residues. The putative ligand-binding site of LPS2 is Γ-shaped, with a hydrophilic site horizontally embedded in the receptor transmembrane helix bundles and a perpendicular hydrophobic groove adjoining transmembrane domains 4 and 5 that is open to the membrane bilayer. The binding poses of LPS2 agonists to this site are consistent with easy incorporation of various kinds of fatty acid surrogates. Structural development based on this model afforded a series of potent and selective LPS2 full agonists, which showed enhanced in vitro actin stress fiber formation effect.


Asunto(s)
Lipopolisacáridos , Simulación de Dinámica Molecular , Receptores Lisofosfolípidos/agonistas , Receptores Lisofosfolípidos/genética , Receptores Lisofosfolípidos/metabolismo , Lipopolisacáridos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Sitios de Unión , Ácidos Grasos , Ligandos
11.
J Biol Chem ; 299(1): 102793, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509140

RESUMEN

Astrocytic excitatory amino acid transporter 2 (EAAT2) plays a major role in removing the excitatory neurotransmitter L-glutamate (L-Glu) from synaptic clefts in the forebrain to prevent excitotoxicity. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA, 22:6 n-3) enhance synaptic transmission, and their target molecules include EAATs. Here, we aimed to investigate the effect of DHA on EAAT2 and identify the key amino acid for DHA/EAAT2 interaction by electrophysiological recording of L-Glu-induced current in Xenopus oocytes transfected with EAATs, their chimeras, and single mutants. DHA transiently increased the amplitude of EAAT2 but tended to decrease that of excitatory amino acid transporter subtype 1 (EAAT1), another astrocytic EAAT. Single mutation of leucine (Leu) 434 to alanine (Ala) completely suppressed the augmentation by DHA, while mutation of EAAT1 Ala 435 (corresponding to EAAT2 Leu434) to Leu changed the effect from suppression to augmentation. Other polyunsaturated fatty acids (docosapentaenoic acid, eicosapentaenoic acid, arachidonic acid, and α-linolenic acid) similarly augmented the EAAT2 current and suppressed the EAAT1 current. Finally, our docking analysis suggested the most stable docking site is the lipid crevice of EAAT2, in close proximity to the L-Glu and sodium binding sites, suggesting that the DHA/Leu434 interaction might affect the elevator-like slide and/or the shapes of the other binding sites. Collectively, our results highlight a key molecular detail in the DHA-induced regulation of synaptic transmission involving EAATs.


Asunto(s)
Ácidos Docosahexaenoicos , Transportador 2 de Aminoácidos Excitadores , Transmisión Sináptica , Xenopus laevis , Ácidos Docosahexaenoicos/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Leucina , Mutación , Xenopus laevis/metabolismo
12.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555475

RESUMEN

Epidermal growth factor receptor (EGFR) resistance to tyrosine kinase inhibitors can cause low survival rates in mutation-positive non-small cell lung cancer patients. It is necessary to predict new mutations in the development of more potent EGFR inhibitors since classical and rare mutations observed were known to affect the effectiveness of the therapy. Therefore, this research aimed to perform alanine mutagenesis scanning on ATP binding site residues without COSMIC data, followed by molecular dynamic simulations to determine their molecular interactions with ATP and erlotinib compared to wild-type complexes. Based on the result, eight mutations were found to cause changes in the binding energy of the ATP analogue to become more negative. These included G779A, Q791A, L792A, R841A, N842A, V843A, I853A, and D855A, which were predicted to enhance the affinity of ATP and reduce the binding ability of inhibitors with the same interaction site. Erlotinib showed more positive energy among G779A, Q791A, I853A, and D855A, due to their weaker binding energy than ATP. These four mutations could be anticipated in the development of the next inhibitor to overcome the incidence of resistance in lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Humanos , Adenosina Trifosfato , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/farmacología
13.
J Org Chem ; 87(22): 15224-15249, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36318089

RESUMEN

The amino group in aminocarboxylic acids is sufficiently basic to be protonated in strong acids, and consequently, ionization of the carboxylic acid to an acylium ion is blocked due to charge-charge repulsion. Thus, acylation of aromatic compounds is significantly retarded in Friedel-Craft type reactions. We found that Friedel-Crafts acylation with aminocarboxylic acids can proceed smoothly even in a strong Brønsted acid (triflic acid, TfOH) if the Lewis base P4O10 is added. Here we describe the Friedel-Crafts acylation reactions of anthranilic acid and α- to δ-aminocarboxylic acids with benzene derivatives in the presence of P4O10. Non-amino-containing carboxylic acids as well as N-containing heteroaromatic carboxylic acids are available, and α-amino acids can be directly utilized without any protective group. Most substrates afford acylation products in high yields, although some epimerization/racemization may occur. Density functional theory (DFT) calculations suggested that P4O10 neutralizes the protonated amine, converting the N-H covalent bond to a N-hydrogen bond and allowing the carboxylic acid OH functionality to serve as a good leaving group.


Asunto(s)
Ácidos , Bases de Lewis , Acilación , Ácidos Carboxílicos , Enlace de Hidrógeno
14.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144714

RESUMEN

In this review, we discuss Friedel-Crafts-type aromatic amidation and acylation reactions, not exhaustively, but mainly based on our research results. The electrophilic species involved are isocyanate cation and acylium cation, respectively, and both have a common +C=O structure, which can be generated from carboxylic acid functionalities in a strong Brønsted acid. Carbamates substituted with methyl salicylate can be easily ionized to the isocyanate cation upon (di)protonation of the salicylate. Carboxylic acids can be used directly as a source of acylium cations. However, aminocarboxylic acids are inert in acidic media because two positively charged sites, ammonium and acylium cation, will be generated, resulting in energetically unfavorable charge-charge repulsion. Nevertheless, the aromatic acylation of aminocarboxylic acids can be achieved by using tailored phosphoric acid esters as Lewis bases to abrogate the charge-charge repulsion. Both examples tame the superelectrophilic character.


Asunto(s)
Compuestos de Amonio , Bases de Lewis , Ácidos , Acilación , Carbamatos , Ácidos Carboxílicos , Cationes/química , Isocianatos/química , Estructura Molecular , Organofosfatos , Salicilatos
15.
J Org Chem ; 87(19): 12653-12672, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36083501

RESUMEN

Neighboring group participation involving a 6-membered ring structure is rare, despite the privilege of 6-membered ring transition structures in organic chemistry. We examined the putative role of a 6-membered cyclic intermediate with neighboring group participation of nitrogen cation in syn-migration of peri-ester indanone oximes. Direct observation of a peri-methyl ester-iminylium intermediate in solution by means of 1H NMR supported the existence of the 6-membered cation intermediate. Density functional theory (DFT) calculations also supported the intervention of this intermediate in the rearrangement and indicated that it has a planar structure stabilized by electron delocalization.


Asunto(s)
Nitrógeno , Oximas , Cationes , Ésteres , Indanos , Nitrógeno/química , Oximas/química
16.
Molecules ; 27(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35164092

RESUMEN

Lung cancer has a high prevalence, with a growing number of new cases and mortality every year. Furthermore, the survival rate of patients with non-small-cell lung carcinoma (NSCLC) is still quite low in the majority of cases. Despite the use of conventional therapy such as tyrosine kinase inhibitor for Epidermal Growth Factor Receptor (EGFR), which is highly expressed in most NSCLC cases, there was still no substantial improvement in patient survival. This is due to the drug's ineffectiveness and high rate of resistance among individuals with mutant EGFR. Therefore, the development of new inhibitors is urgently needed. Understanding the EGFR structure, including its kinase domain and other parts of the protein, and its activation mechanism can accelerate the discovery of novel compounds targeting this protein. This study described the structure of the extracellular, transmembrane, and intracellular domains of EGFR. This was carried out along with identifying the binding pose of commercially available inhibitors in the ATP-binding and allosteric sites, thereby clarifying the research gaps that can be filled. The binding mechanism of inhibitors that have been used clinically was also explained, thereby aiding the structure-based development of new drugs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Conformación Proteica/efectos de los fármacos
17.
Eur J Med Chem ; 231: 114154, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35124532

RESUMEN

Large numbers of diverse biologically active molecules are produced from phospholipids, the constituents of biological membranes. Indeed, many lipid-derived ligands, which can undergo inter-transformation between one and another by certain kinases or enzymes, bind to protein receptors such as G-protein-coupled receptors, and serve to regulate multiple biological processes through a variety of signaling pathways. Thus, lipid mediators are likely involved in a synergistic regulatory network, and dysfunction of this network may result in diseases. Here, we reviewed recent progress in the drug development targeting related receptors, focusing on the identification of common structural features which can both come from endogenous ligands or artificial ligands. We also discussed how these features have been utilized in drug design and relevant issues such as potency, selectivity, metabolic stability, and toxicity.


Asunto(s)
Receptores Artificiales , Ligandos , Lípidos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
18.
J Org Chem ; 87(3): 1641-1660, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34082529

RESUMEN

We studied the Z/E preference of N-phenylthioacetamide (thioacetanilide) derivatives in various solvents by means of 1H NMR spectroscopy, as well as molecular dynamics (MD) and other computational analyses. Our experimental results indicate that the Z/E isomer preference of secondary (NH)thioamides of N-phenylthioacetamides shows substantial solvent dependency, whereas the corresponding amides do not show solvent dependency of the Z/E isomer ratios. Detailed study of the solvent effects based on molecular dynamics simulations revealed that there are two main modes of hydrogen (H)-bond formation between solvent and (NH)thioacetamide, which influence the Z/E isomer preference of (NH)thioamides. DFT calculations of NH-thioamide in the presence of one or two explicit solvent molecules in the continuum solvent model can effectively mimic the solvation by multiple solvent molecules surrounding the thioamide in MD simulations and shed light on the precise nature of the interactions between thioamide and solvent. Orbital interaction analysis showed that, counterintuitively, the Z/E preference of NH-thioacetamides is mainly determined by steric repulsion, while that of sterically congested N-methylthioacetamides is mainly determined by thioamide conjugation.


Asunto(s)
Simulación de Dinámica Molecular , Tioamidas , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Solventes/química , Tioamidas/química
19.
J Med Chem ; 64(14): 10059-10101, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34233115

RESUMEN

Three human G protein-coupled receptors (GPCRs)-GPR34/LPS1, P2Y10/LPS2, and GPR174/LPS3-are activated specifically by lysophosphatidylserine (LysoPS), an endogenous hydrolysis product of a cell membrane component, phosphatidylserine (PS). LysoPS consists of l-serine, glycerol, and fatty acid moieties connected by phosphodiester and ester linkages. We previously generated potent and selective GPCR agonists by modification of the three modules and the ester linkage. Here, we show that a novel modification of the hydrophilic serine moiety, that is, N-acylations of the serine amine, converted a GPR174 agonist to potent GPR174 antagonists. Structural exploration of the amide functionality provided access to a range of activities from agonist to partial agonist to antagonist. The present study would provide a new strategy for the development of lysophospholipid receptor antagonists.


Asunto(s)
Aminas/farmacología , Lisofosfolípidos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Serina/farmacología , Acilación , Aminas/química , Relación Dosis-Respuesta a Droga , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisofosfolípidos/síntesis química , Lisofosfolípidos/química , Estructura Molecular , Serina/química , Relación Estructura-Actividad
20.
Chem Commun (Camb) ; 57(67): 8344-8347, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34328149

RESUMEN

NH-π and CH-π interactions, due to their weak character, are not easily identified in solution. We report a group of isolable short peptides with stable folds, in which NH-π and CH-π main chain-side chain interactions can be detected in solution by means of NMR and ATR-IR spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA